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MPU Clock Frequency Trend

10 GHz CPU by 2007
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e Pico-second timing-design is required.




MPU Power-Supply Trend

800 1.2
| 720 A !l
< 700} Current '

j} Voltage 110 %?
S 600 F S

- 0.8
g: 500 |- (é)
\./U ©
5= 400 - {06 S
o <
= Q <
o3 300Ff S
Qo 104 £
O 200} S
% i do2 @
100 Power >
o 100, MPU | S

O 1 ] 1 ] 1 ] 1 ] 1 ] 1 ] 1 ] 1 ] 1 OO

2002 2004 2006 2008 2010 2012 2014 2016
Year Ref [2]

 Power-supply-current increases rapidly, even though the supply-
voltage decreases.

e Large current causes power-integrity and electro-migration problems.



MPU Transistor Count Trend

1 billion transistor CPU by 2007
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» A lot of functions are integrated on a chip.

* Design complexity increases.
e 7o-control of device variations is reauired for 1 billion transistors.




MPU Feature Size Trend
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e Transistor size is aggressively scaled into nanometer
region.




MOS Transistor

ate Electrode §355
R IR

1.2 nm SiO,

Comparable to the lattice constant of silicon (0.54 nm)

Ref [1]
 50-nm gate length transistor with the atomic-level gate
Insulator



Introduction of New Materials

From Al to Cu Interconnect for low resistance

From SiO, to low-k dielectric\ m

for low capacitance

Gate

From SiO,
to high-k
gate dielectric
for low leakage

From Si
to SiGe channel
for large current

 New materials are introduced to break through the scaling limit.
« New materials cause novel reliability problems.



What Threatens the Dependability of VLSI?

Trend of VLSIs Dependability issues

High speed ; Power / signal integrity problems

Low voltage — at design-phase
deterministic

Large current

—> Device variation problems
: at manufacturing-phase
Atomic-level fabrication : statistical

New materials — \ Degradation problems

> after shipping
time-dependent

Many transistors

 The dependability of VLSI is threatened by a lot of problems at
3-phases.

* All these problems are difficult to predict accurately.

 The prompt solutions to these problems are essential to keep
the continuous evolution of VLSIs.
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Power / Signal Integrity Problems at Design-Phas.e11

Signal Integrity Problems Power Integrity Problems
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 These problems could be ignored in the past, however,
they increase the influence on the circuits performance
with the high-speed, low-voltage, and large-current trend.

* Now, they are the main cause of the failure of LSI design.
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Power Integrity Problems
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 Modeling of the power-supply-noise is difficult, because;

(1) The power-supply-network is large-scale.
Ex.) 5000 pads for vVdd/Gnd,
Total length of Vdd/Gnd wires on 20 mm-square-chip is 1.1 km!!

(2) The supply-current changes with the operation of LSI.

» Typical measures against the noise is Cd, however, Cd occupies
20 % of achip. - Increased chip area

* Verification of the model is also difficult, because the
measurement of the on-chip noise waveform is hard.

- On-chip oscilloscope circuits is developed.



Off-Chip vs. On-chip Measurement
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Techniques

Off-chip Measurement

On-chip Measurement
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* On-chip very fast waveforms can be measured by the on-
chip measurement using the oscilloscope circuits.
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On-Chip Oscilloscope Circuits
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* These accurate measured results are used to calibrate the
power-supply-noise model.
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Signal Integrity Problems

» Signal integrity problems contain;
« Crosstalk between the interconnects (~not discussed here)
* Inductive component of the interconnects

* Inductive effect is especially-pronounced in the low-
resistance interconnects for global clock distribution.
* Delay error due the inductive effect results in clock skew.

l [ /RLC model Ref [5]

RC model (conventional)
17% Error

Impedance

» 0 50 100 150 200
frequency Time [ps]




Modeling of On-Chip Inductance

e Inductance is determined by the current-loop.

 Modeling of the on-chip inductance is difficult, because;
(1) A on-chip signal line has no ground plane, and it has many
current-return-loops.
(2) Inductance and resistance depend on the frequency
because of the skin effect and the proximity effect.
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Device Variation Problems at Manufacturing-Phase

« Atomic-level control of the fabrication of billons of
transistors is a challenging task.

 The relative variation of the gate length (Lg) increases with
technology scaling due to the fabrication difficulty.
Ex.) Lg =350 nm£ 10% (past) - Lg=50nmzx 20% (now)
— Large variations of the device characteristics

e Intrinsic fluctuation in device characteristics due to
discrete dopant atoms is an essential problem.
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Vi Fluctuation due to Discrete Dopant Atoms

Atomic 3 D process/device simulation
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« Threshold voltage (V,,) fluctuation induced by the statistical nature of
the number and position of discrete dopant atoms.
 The only solution is the non-doped SOI devices.



Circuit Techniques 21

to ComEensate for Device Variations
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e The substrate bias (V) Is controlled adaptively by using
the replica of the critical path to meet the frequency target.

 Intra-chip variations, as well as inter-chip variations, are
corrected, and the frequency variations are reduced.
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Degradation Problems after Shipping 2

e Introduction of new materials to VLSI causes novel
reliability issues.

* Reliability of the high-k gate dielectric is not clearly
understood.

* Electromigration is mitigated by changing from Al to Cu
Interconnects. However, it will be a serious problem,
because the current density increases rapidly.

e Stress-induced voidjng is the most serious problem in Cu
Interconnects.

Ref [10]
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Future Dependable VLSIs
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Dependable VLSIs Design

Reliability Degradation in 10-Million Gate LSIs
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« Memory LSI has the simple function and the regular structure.

-~ Redundancy and the error correcting code (ECC) are the mature
technologies.

* Logic LSI has the various functions and the complicated structure.

—» Random logic LSl with the redundancy is hard to realize.

* FPGA has the regular structure.
- FPGA is suitable for the logic LSI with the redundancy.
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Autonomous Reconfigurable Cell Array (ARCA) %
for Dependable Logic VLSIs
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« SPLC is composed of the two-rail logic.
— A fault is detected, when the signals of the two-rail logic are the same.
* Real-time online fault recovery is performed by the self-checking.



Autonomous Reconfiguration

Used Cells Redundant |
Cells
/ Fault Cell

1
|I l
| 510 | -
Lildgh [ 1 I
. 1 J ] s u L]
i [ - = ] =
— — e L Ly
¥ Sy

Reconfiguration

Self-checking Programmable
Logic Cell (SPLC) Array

e ———. |+

28



Reconfiguration Sequence

(8) Reprogram
l (7)Transfer
—l —

== (5) Transfer 1
-EE::- C ~Er:n
oo IHE LT el
Q1=
— | Reconfig. o) IG:IL
I*TEC  — ' EC
GE. I} | R— - » . — |—

|||

a3 .

-
\
=

SPLC Array *1(1) Failure °
(2) Req._(3) Req. _
‘Féﬁ!ﬁ&“ 4L 4L | Recovery Controller
(6) Ack. (4) Ack.

Reconfiguration of 4-bit Counter

IEEE

29



Chip Micrograph of ARCA

8x 8 ARCA LSl with 0.35- -um CMOS
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Measured Reconfiguration
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Overhead of ARCA
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Improved Reliability by ARCA

Reliability

1.0

O
o1

Random logic LSI
/ (1-million gates)

T ARCA

(Effective 1-million gates
~ in 20-million gates)

FPGA
(Effective 1-million gates
in 10-million gates)

10

Operating time (years)

e Reliability of FPGA is improved by ARCA.
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Summary

 The dependability of VLSI is threatened by;
(1) The deterministic power / signal integrity problems at
design-phase
(2) The statistical device variation problems at
manufacturing-phase
(3) The time-dependent degradation problems after

shipping

e The prompt solutions to these problems are essential
to keep the continuous evolution of VLSIs.

e Future dependable VLSIs should introduce the fault-
tolerant systems by the feed-back design-flow.
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