44th meeting of IFIP Working Group 10.4 on Dependable Computing and Fault Tolerance, Workshop on "Hardware Design and Dependability"

June 28, 2003

Challenges to Dependable VLSIs

Makoto Takamiya Silicon Systems Research Laboratories NEC Corporation

taka@mel.cl.nec.co.jp

Outline

- Technology trend of VLSIs
- Dependability issues
 - Power / signal integrity problems at design-phase
 - Device variation problems at manufacturing-phase
 - Degradation problems after shipping
- Future Dependable VLSIs
 - Autonomous Reconfigurable Cell Array (ARCA)
- Summary

MPU Clock Frequency Trend

• Pico-second timing-design is required.

MPU Power-Supply Trend

- Power-supply-current increases rapidly, even though the supplyvoltage decreases.
- Large current causes power-integrity and electro-migration problems.

MPU Transistor Count Trend

- A lot of functions are integrated on a chip.
- Design complexity increases.
- 7σ -control of device variations is required for 1 billion transistors.

MPU Feature Size Trend

Transistor size is aggressively scaled into nanometer region.

MOS Transistor

Comparable to the lattice constant of silicon (0.54 nm)

Ref [1]

50-nm gate length transistor with the atomic-level gate insulator

Introduction of New Materials

- New materials are introduced to break through the scaling limit.
- New materials cause novel reliability problems.

What Threatens the Dependability of VLSI?

- The dependability of VLSI is threatened by a lot of problems at 3-phases.
- All these problems are difficult to predict accurately.
- The prompt solutions to these problems are essential to keep the continuous evolution of VLSIs.

Outline

- Technology trend of VLSIs
- Dependability issues
 - Power / signal integrity problems at design-phase
 - Device variation problems at manufacturing-phase
 - Degradation problems after shipping
- Future Dependable VLSIs
 - Autonomous Reconfigurable Cell Array (ARCA)
- Summary

Power / Signal Integrity Problems at Design-Phase

- These problems could be ignored in the past, however, they increase the influence on the circuits performance with the high-speed, low-voltage, and large-current trend.
- Now, they are the main cause of the failure of LSI design.

Power Integrity Problems

- Modeling of the power-supply-noise is difficult, because;
 - (1) The power-supply-network is large-scale.
 - Ex.) 5000 pads for Vdd/Gnd,

Total length of Vdd/Gnd wires on 20 mm-square-chip is 1.1 km!! (2) The supply-current changes with the operation of LSI.

- Typical measures against the noise is Cd, however, Cd occupies 20 % of a chip. Increased chip area
- Verification of the model is also difficult, because the measurement of the on-chip noise waveform is hard. On-chip oscilloscope circuits is developed.

Off-Chip vs. On-chip Measurement Techniques

13

 On-chip very fast waveforms can be measured by the onchip measurement using the oscilloscope circuits.

On-Chip Oscilloscope Circuits

14

Measured Power-Supply-Noise by Oscilloscope Circuits

 These accurate measured results are used to calibrate the power-supply-noise model.

Signal Integrity Problems

- Signal integrity problems contain;
 - Crosstalk between the interconnects (not discussed here)
 - Inductive component of the interconnects
- Inductive effect is especially-pronounced in the lowresistance interconnects for global clock distribution.
- Delay error due the inductive effect results in clock skew.

Modeling of On-Chip Inductance

17

- Inductance is determined by the current-loop.
- Modeling of the on-chip inductance is difficult, because;
 (1) A on-chip signal line has no ground plane, and it has many current-return-loops.

(2) Inductance and resistance depend on the frequency because of the skin effect and the proximity effect.

Outline

- Technology trend of VLSIs
- Dependability issues
 - Power / signal integrity problems at design-phase
 - Device variation problems at manufacturing-phase
 - Degradation problems after shipping
- Future Dependable VLSIs
 - Autonomous Reconfigurable Cell Array (ARCA)
- Summary

Device Variation Problems at Manufacturing-Phase

- Atomic-level control of the fabrication of billons of transistors is a challenging task.
- The relative variation of the gate length (Lg) increases with technology scaling due to the fabrication difficulty.
 Ex.) Lg = 350 nm ± 10% (past)
 Lg = 50 nm ± 20% (now)
 Large variations of the device characteristics
- Intrinsic fluctuation in device characteristics due to discrete dopant atoms is an essential problem.

V_{th} Fluctuation due to Discrete Dopant Atoms²⁰

- Threshold voltage (V_{th}) fluctuation induced by the statistical nature of the number and position of discrete dopant atoms.
- The only solution is the non-doped SOI devices.

Circuit Techniques to Compensate for Device Variations

Ref [9]

- The substrate bias (V_{sub}) is controlled adaptively by using the replica of the critical path to meet the frequency target.
- Intra-chip variations, as well as inter-chip variations, are corrected, and the frequency variations are reduced.

Outline

- Technology trend of VLSIs
- Dependability issues
 - Power / signal integrity problems at design-phase
 - Device variation problems at manufacturing-phase
 - Degradation problems after shipping
- Future Dependable VLSIs
 - Autonomous Reconfigurable Cell Array (ARCA)
- Summary

Degradation Problems after Shipping

- Introduction of new materials to VLSI causes novel reliability issues.
- Reliability of the high-k gate dielectric is not clearly understood.
- Electromigration is mitigated by changing from AI to Cu interconnects. However, it will be a serious problem, because the current density increases rapidly.
- Stress-induced voiding is the most serious problem in Cu interconnects.

23

Outline

- Technology trend of VLSIs
- Dependability issues
 - Power / signal integrity problems at design-phase
 - Device variation problems at manufacturing-phase
 - Degradation problems after shipping
- Future Dependable VLSIs

— Autonomous Reconfigurable Cell Array (ARCA)

• Summary

Future Dependable VLSIs with Feed-Back Design-Flow

Dependable VLSIs Design

Reliability Degradation in 10-Million Gate LSIs

- Memory LSI has the simple function and the regular structure. Redundancy and the error correcting code (ECC) are the mature technologies.
- Logic LSI has the various functions and the complicated structure. Random logic LSI with the redundancy is hard to realize.
- FPGA has the regular structure. FPGA is suitable for the logic LSI with the redundancy.

Autonomous Reconfigurable Cell Array (ARCA) ²⁷ for Dependable Logic VLSIs

• SPLC is composed of the two-rail logic.

A fault is detected, when the signals of the two-rail logic are the same.

• Real-time online fault recovery is performed by the self-checking.

Autonomous Reconfiguration

28

Reconfiguration Sequence

Reconfiguration of 4-bit Counter

Chip Micrograph of ARCA

8 x 8 ARCA LSI with 0.35- μ m CMOS

Measured Reconfiguration

Reconfiguration for 6-bit Counter at 20 MHz Operation

 $5 \mu s$

32

Overhead of ARCA

- Time Overhead for Reconfiguration (8S+2)D+(4S+2) clock cycles
 S: SPLC array size +2
 D: Distance from fault line
 to redundant line
- Area Overhead
 - Two-rail logic implementation
 - \Rightarrow x2
 - Recovery controller
 - \Rightarrow 2% @ 100x100 ARCA

Improved Reliability by ARCA

• Reliability of FPGA is improved by ARCA.

Summary

- The dependability of VLSI is threatened by;
 - (1) The deterministic power / signal integrity problems at design-phase
 - (2) The statistical device variation problems at manufacturing-phase
 - (3) The time-dependent degradation problems after shipping
- The prompt solutions to these problems are essential to keep the continuous evolution of VLSIs.
- Future dependable VLSIs should introduce the faulttolerant systems by the feed-back design-flow.

References

- [1] M. Bohr, "High-performance logic technology and reliability challenges", IEEE International Reliability Physics Symposium, 2003.
- [2] International Technology Roadmap for Semiconductors, 2002 Update. http://public.itrs.net/
- [3] N. Oda et al., "A robust embedded ladder-oxide/Cu multilevel interconnect technology for 0.13 μ m CMOS generation", IEEE Symposium on VLSI Technology, pp. 34 35, 2002.
- [4] M. Takamiya et al., "An on-chip, 100-GHz sampling rate, 8-channel sampling oscilloscope macro with embedded sampling clock generator", IEEE International Solid-State Circuits Conference, pp. 182 – 183, 2002.
- [5] M. Beattie et al., "Inductance 101: modeling and extraction", Design Automation Conference, pp. 323 328, 2001.
- [6] R. Kao et al., "Frequency-independent equivalent-circuit model for on-chip spiral inductors", IEEE Journal of Solid-State Circuits, pp. 419 426, 2003.
- [7] X. Huang et al., "Loop-based interconnect modeling and optimization approach for multigigahertz clock network design", IEEE Journal of Solid-State Circuits, pp. 457 463, 2003.
- [8] T. Ezaki et al., "Investigation of realistic dopant fluctuation induced device characteristics variation for sub-100 nm CMOS by using atomistic 3D process/device simulator", IEEE International Electron Devices Meeting, pp. 311 – 314, 2002.
- [9] J. Tschanz et al., "Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage ", IEEE International Solid-State Circuits Conference, pp. 422 – 423, 2002.
- [10] K. Yoshida et al., "Stress-induced voiding phenomena for an actual CMOS LSI interconnects", IEEE International Electron Devices Meeting, pp. 753 756, 2002.
- [11] A. Shibayama et al., "An autonomous reconfigurable cell array for fault-tolerant LSIs", IEEE International Solid-State Circuits Conference, pp. 230 – 231, 1997.