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Abstract-Backgate biasing is a promising technique for high-
speed systems. Leakage can be reduced during standby periods 
by reverse bias while adequate bias in active mode can balance 
process and temperature variations. This technique introduces no 
delay penalty in active mode but slow wake up time results in 
system performance degradation. In this paper, a backgate bias 
accelerator achieving 24ns/V sleep-to-active mode transition rate 
is demonstrated in a 90 nm CMOS technology. The circuit 
performs auto-calibration of the transition time as a function of 
the Sleep and Active mode backgate bias voltages. Those can 
therefore be tuned on-chip according to process variations and/or 
operating conditions. The accelerator occupies less than 2.5% of 
the total chip area, consumes 600µW during the transitions and 
doesn’t add any bias current during active and sleep modes.  

 

I. INTRODUCTION 
 

 Reduction of static power dissipation during standby 
(or ‘sleep’) periods, i.e. when no data operation must be 
performed, is a major requirement for any VLSI chip today. 
Power gating technique, which introduces high threshold 
voltage (Vth) sleep transistors to gate the power supplies of 
low Vth logic blocks during standby periods is widely used 
now [1] but suffers from some limitations for ultra-high speed 
applications. The insertion of sleep transistors results in a 
degradation of circuit speed and consumes silicon area. Their 
sizing can be a difficult task. The power supply noise induced 
by the switching of the sleep devices may affect the system 
reliability and the circuit state is lost when it is disconnected 
from power line, unless specific flip-flops with state retention 
capability during sleep modes or additional low standby power 
memory are used. In this last case, data saving and recovering 
operations increase the system latency.  

An alternative to power gating is backgate/body bias: the 
Vth of the transistors is increased by reverse body bias during 
sleep mode, resulting in leakage power reduction. Backgate 
bias shows several advantages compared to power gating: 

1) Unlike power gating, there is no data loss during 
standby mode, eliminating the requirement of specific storage 
elements. 

2) Backgate bias can be used in active mode as well to 
balance process and temperature variations, and/or tune the 
circuit speed according to the computation requirements. 

A common criticism against backgate bias is that the 
efficiency of reverse body-biasing degrades as technology 
scales due to lower body effect factor, Band-to-Band-
Tunneling in reverse biased junctions, GIDL, and increased 
contribution of gate leakage. However, those issues can be 
solved by fabrication process improvements: in [2] for 
example, it is shown that backgate bias can reduce 

subthreshold leakage by one and half order of magnitude in 
65nm CMOS technology. Moreover, backgate bias is expected 
to get increased interest in a near future with the technological 
evolution towards double-gate devices that demonstrate very 
high backgate control efficiency, such as FinFETs or 
SOTBOX [3]. 

The circuits of this work have been implemented in a 
90nm CMOS technology in which the static power can be 
divided by 4 by applying -1V reverse backgate bias as shown 
in Fig. 1. In active mode, backgate bias can tune the delay of 
logic cells by +/- 30% (Fig. 2) to balance process/temperature 
variations.. 
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Fig. 1: Measured static current of 40k NAND gates versus backgate bias 

(VDD=1V, VBackgate=∆VB for NMOSFETs, VBackgate=VDD-∆VB for PMOSFETs). 
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Fig. 2: Measured propagation delay of a 2NAND gate (fanout 3) versus 
backgate bias (VDD=1V, VBackgate=∆VB for NMOSFETs, VBackgate=VDD-∆VB for 
PMOSFETs). 
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Backgate bias, possibly combined with variable VDD [2], is 
therefore especially appropriate for high speed applications, 
like servers or super-computers, at the condition to provide 
fast transitions between sleep and active modes. In active 
mode, the backgate bias generator must provide adequate 
backgate bias voltage VBGA to balance process and 
temperature variations. Typically, this generator can be 
implemented as a voltage buffer with a simple source follower 
or an amplifier in a feedback loop [4]. It must dissipate 
minimum power, provided its output impedance is sufficiently 
low for not introducing additional noise onto the substrate. 
Considering this, a conventional backgate generator cannot 
provide fast charging of the large backgate capacitance to 
sweep its voltage from negative sleep backgate bias (VBGS) 
to VBGA in a short time.  

In this paper, we present a Backgate Bias Accelerator 
(BBA) circuit that allows to strongly accelerate the charging 
of the backgate to have fast transition from sleep to active 
modes, with VBGA tuning capability. In section II we 
describe the operation principle of the new accelerator. A 
description of the circuits is given in section III. An 
experimental design on a 90nm CMOS technology is 
presented in section IV.  

 
 

II. BACKGATE BIAS ACCELERATOR PRINCIPLE 
 

Let consider the backgate bias technique in the case of 
NMOSFETs. Fig. 3 illustrates the principle of the proposed 
circuit to accelerate the sleep-to-active modes transition.  

In sleep mode, the sleep control signal is HIGH and the 
backgate is tied to VBGS (e.g. -1V). The active mode 
backgate bias generator is turned off and doesn’t consume any 
DC bias current. Once the SLEEP control signal goes down, a 
large PMOS (the raiser) is turned on and quickly charges the 
backgate. The raiser is turned off once the backgate voltage 
has reached VBGA. This voltage is then maintained in active 
mode by the low power Active Mode Backgate Bias Generator. 
The raiser must be accurately controlled to avoid backgate 
charging above (if it is turned off too late) or below (if it is 
turned off too early) VBGA. If we turn off the raiser after that 
a comparator has detected that the backgate has reached 
VBGA, the delays of the comparator and the long raiser buffer 
chain introduce imprecion in final backgate voltage. In the 
next section we present a technique to precisely control the 
gate of the raiser so that it is turned off when the backgate 
voltage is precisely equal to VBGA.  
 
 

III. CONTROL CIRCUITS FOR THE BACKGATE BIAS 
ACCELERATOR 

 

The circuit to generate the control signal for the raiser is 
shown in Fig. 4. It is based on the use of a mirror-delay circuit 
whose principle has been introduced in [5]. The operation can 
be explained with the timing diagram that is plotted in Fig. 5. 
In sleep mode (i.e. Sleep=HIGH), the backgate is reverse 
biased to VBGS. When the sleep (respectively sleepB) signal 
goes low (resp. high), the raiser is turned on and begins to 

charge the backgate. At the same time, the capacitor C1 is 
charged by a current IC.  

After a time interval tx, the backgate reaches half of its 
total variation (i.e. (VBGA-VBGS)/2) causing the output of 
comparator I to go high.  If the charging process of the 
backgate is sufficiently linear, we can expect that the same 
time interval tx will be required to conclude the charging of the 
backgate up to VBGA. The rising edge at the output of the 
comparator stops the charging of capacitor C1 and starts the 
charging of an identical capacitor C2 by the same current IC. 
C2 will reach the same voltage than C1 after a time tX. At this 
moment the raiser can be turned off, and the backgate voltage 
is then kept equal to VBGA by the low power active mode 
backgate bias generator (ABBG). The proposed circuit 
automatically adapts the backgate charging time depending on 
the VBGA and VBGS voltages, allowing on-chip tuning of the 
backgate bias in both active and sleep modes as function of the 
process variations and/or the operating conditions. 

The principle of the backgate bias accelerator relies on a 
linear charging of the backgate. This is only the case if the 
backgate capacitance is charged by a constant current. The 
raiser transistor must therefore operate in saturation during the 
complete transition. Since the raiser signal that controls its 
gate is grounded during the transition, saturation is guaranteed 
for any VBGA<Vtp=0.4V, where Vtp is the threshold voltage 
of the raiser. 

The logic gates and the comparators of the control circuits, 
and the buffer chain to drive the raiser introduce additional 
delays that must be taken into account. A simple timing 
analysis shows that a proper control of the raiser requires the 
introduction of a delay replica as shown in Fig. 4 with a 
propagation delay trepl :,  

 

BUFFNANDIIcompIcomprepl ttttt 242 ,, +++=  

 
where tcomp,I and tcomp.II stand for the delays introduced by 
comparator I and II respectively, tNAND is the propagation 
delay of a NAND gate and tBUFF  is the propagation delay 
through the buffer chain that drives the PMOS raiser.  
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Fig. 3: Backgate Bias Accelerator Principle 
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Fig. 4: Schematic of Backgate Bias accelerator
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IV. IMPLEMENTATION ON 90nm PROCESS 

 

The circuit has been implemented and measured on a 
triple-well 90nm CMOS technology. The same circuit could 
be used in a double-gate technology [3]. As a test vehicle, the 
BBA is connected to the P-well of 40k NAND gates. The 
circuits inside the dotted rectangle in Fig. 4 are supplied 
between VDD=1V and VSS=VBGS<0V (e.g. -1V). Their 
transistors must operate with drain-to-source voltage superior 
to the standard 1V supply voltage. They were therefore 
implemented with 2.5V I/O devices. The other circuits are 
conventionally supplied between VDD=1V and ground. 
 
A. Raiser 

The raiser has been implemented with a PMOSFET with 
non-minimum length (W=40x10µm, L=1µm) for higher 
output impedance and better linearity of the backgate charging.    
 
B. Comparators 

The voltage stored on nC1 when the backgate has reached 
the half of its final value depends on VBGS, VBGA. By a 
proper choice of the capacitors C1 and C2 and of the current 
IC, we can ensure that it lies between 0 and VDD for all 
possible (VBGA, VBGS) pairs. Comparator II must have a 
relatively constant delay for any stored voltage on C1. We 

therefore implemented a rail-to-rail comparator that combines 
operational transconductance amplifiers (OTAs) with 
NMOSFETs and PMOSFETs differential pairs.  

Comparator I, which is supplied by VDD and VBGS lines is 
an OTA made of 2.5V transistors. 

The DC bias of the comparators is controlled by the sleep 
signal to guarantee zero DC current during sleep mode. 
 
C. Active mode backgate bias generator 

The active mode backgate bias generator (ABBG) consists 
of an OTA in voltage follower configuration (Figs. 4, 6). It has 
been designed following a power constrained methodology. Its 
DC power dissipation must be strongly inferior to the active 
power dissipated by the logic. The power dissipation of a chip 
with an area equivalent to the 40k NAND gates test vehicle 
has been estimated to 50mW for a 1GHz clock frequency. The 
maximum DC power of the ABBG has been fixed to 3% of 
the total chip power. The output impedance of the ABBG must 
be minimized in order to reduce the noise impact on backgate 
voltage variations [4]. The maximum DC power fixes the 
maximum DC bias current of the differential pair of the OTA, 
and consequently determines the minimum achievable output 
impedance of the ABBG.  

The designed ABBG provides 285Ω output impedance. 
The OTA shows a 47dB DC gain, its DC power dissipation is 
equal to 1.5mW in active mode and 72nW in sleep mode. 
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Fig. 6: Active Mode Backgate Bias Generator. 
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D. Experimental results 
A picture of the test chip is shown in Fig. 7. The total area 

of the backgate bias accelerator represents less than 2.5% of 
the total area for the 40k NAND gates. 40% of the area of the 
BBA is occupied by C1 and C2 that were implemented with 
MIM capacitors. The area overhead of the BBA could be 
therefore significantly reduced by the use of MOS capacitors.  

The voltage of the p-well of the 40k NAND gates is 
measured by a high frequency active probe. BBA and the pad 
for probing are located on different sides of the 40k NAND 
block in order to take into account any RC-delay for the 
backgate bias.  

Fig. 8 shows the measured backgate bias during sleep-to 
active modes transitions. VBGS is fixed to -1V, while VBGA 
is swept between -0.4V and 0.4V. The BBA efficiently control 
the ON time of the raiser according to the VBGA value, 
allowing on-chip tuning of both sleep and active backgate bias 
voltages. Without BBA, the active mode backgate bias 
generator alone takes up to 1µs to charge the backgate. With 
the BBA, the transition time between sleep and active mode 
ranges from 12ns to 35ns, that is more than 28 times faster. 
Simulations show that 5ns rising time is possible by enlarging 
the raiser transistor without any modification to the rest of the 
circuit. Without mirror-delay to precisely predict the required 
ON time of the raiser, the delays of the comparator and the 
raiser buffer would introduce higher than 100mV imprecision 
in final backgate voltage.  

The total power dissipation of the BBA during the sleep-
to-active mode transition is 600µW. Once final voltage has 
been reached, it can be switched off and consumes negligible 
power. 

 
V. CONCLUSION 

 

 A backgate bias accelerator that achieves fast transition 
between tunable sleep and active mode backgate voltages has 
been designed. Conventional active mode backgate bias 
generators have poor drivability, resulting in slow wake up 
time. Our circuit achieves 0.5V change of backgate voltage in 
12ns and 1.5V change in 35ns (i.e ≈24ns/V).  It doesn’t 
degrade the leakage in sleep mode and occupies less than 
2.5% of the chip area, further area reduction being possible 
with the use of MOS capacitors.  
 

 
Fig. 7: Test chip microphotograph 
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Fig. 8: Sleep-to-active voltage transitions of the backgate of 40K NAND 
gates: (a) with and without BBA; (b) detail of transition with BBA (VBGS=-
1V, VBGA=-0.4, 0 and 0.4V). 
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