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Abstract—A novel communication system which simultane-
ously achieves the mobility of wireless communication and the
low-power performance of wireline communication is developed
with a printable sheet. By combining meter-scale wireline com-
munication and micrometer-scale wireless capacitive-coupling
communication, the proposed communication system enables mul-
tiple electronic objects scattered over tables, walls, and ceilings to
communicate contactlessly with each other by establishing com-
munication paths without cumbersome physical connections. The
transceiver developed for the 20 cm 20 cm communication sheet
features a data-edge-signaling transmitter and a dc power-free
pulse detector, thereby achieving the lowest energy of 107 pJ/bit
at 100 kb/s in wireless communications at a distance of 60 cm in
0.18- m CMOS.

Index Terms—Capacitive coupling, inductive coupling, low
power, proximity communication, transceiver.

I. INTRODUCTION

U BIQUITOUS electronics refers to electronic environ-
ments that are sensitive and responsive to the presence

of people. In a ubiquitous electronics world, devices work in
concert to support people to carry out their activities and tasks
in an easy natural way using information and intelligence that
is hidden in the network connecting these devices. The vision
on the future of consumer electronics and telecommunications
is shown in Fig. 1(a). To protect safety and security, promote
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Fig. 1. (a) Ubiquitous electronics. (b) Proposed commutation system.

healthcare and welfare, and provide entertainment and conve-
nience, 1000–10 000 electronic devices are distributed around
the user’s environment.

The future ubiquitous electronics requires a huge number of
chips, and thus, each of the chips should be implemented at a
minimal power level. To capture the user’s environment, the
basic idea is to integrate sensor networks into wireless com-
munication systems. However, singular wireless communica-
tion systems attain improved flexibility and mobility at the ex-
pense of increased circuit complexity and power consumption
over their wireline counterparts. In this paper, a novel commu-
nication method which simultaneously achieves the mobility
of wireless communication and the low-power performance of
wireline communication is implemented with a low-cost print-
able sheet [1], [2]. The proposed commutation system is shown
in Fig. 1(b). By combining meter-scale wireline communication
and micrometer-scale wireless capacitive-coupling communica-
tion, the sheet enables multiple electronic objects scattered over
tables, walls, and ceilings to communicate contactlessly with
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Fig. 2. Comparison of capacitive and inductive coupling. (a) Capacitive cou-
pling. (b) Inductive coupling. (c) Energy–frequency characteristic.

each other by establishing communication paths without cum-
bersome physical connections. Together with the wireless power
transmission sheet [3], [4], the presented communication sheet
can build an infrastructure for ubiquitous electronics, wireless
sensor networks, and ambient intelligence.

The overview of the whole communication system is de-
scribed in Section II. Sections III and VI present the proposed
data-edge-signaling transmitter (TX) and the dc power-free
receiver (RX), respectively. Experimental results are presented
in Section V, and Section VI concludes this paper.

II. PRINTABLE COMMUNICATION SHEET

A. Capacitive versus Inductive Coupling

The communication between the transceiver and the sheet is
similar to the conventional proximity communication [5]–[11].
Proximity communication is based on the observation that faster
lower cost communication is possible over shorter distances. For
the communication sheet, this is achieved by placing two sheets
face-to-back in a manner that aligns the pads of the TX/RX
sheet with the pads of the routing sheet. Proximity communica-
tion can be implemented by capacitive and inductive coupling.
The option between capacitive and inductive coupling is com-
plicated by various factors. If the received signal is large enough
so that the power consumption of the receiver can be ignored,
the power consumption of the whole system is only determined
by the transmitter.

For the capacitive-coupling system, the transmitter require-
ment is straightforward. A simple chain of inverters with ad-
equate drive strength is usually sufficient. Fig. 2(a) shows the
simplified schematic of capacitive-coupling system. The capac-
itances and represent the coupling and parasitic capaci-
tances of the sheet, respectively. and form a capacitance
divider and reduce the received signal swing on the receiver pad.
The energy consumption of the capacitive-coupling system can
be approximated by

(1)

Compared with the capacitive-coupling system, an inductive-
coupling system can transfer both power and signal informa-
tion across an interface. A large size of inductors is required
to send both dc and ac signals, which negates the ability to
have high-density integration. However, if the inductive cou-
pling is only used to transfer ac information, the size of inductors
can be reduced, and a simple current-mode driver is sufficient.
Fig. 2(b) shows the simplified schematic of the inductive-cou-
pling system. For the given receiver voltage , the energy con-
sumption of the transmitter can be approximated by

(2)

In the communication sheet, the available maximum effective
inductance is 10 H, and the worst case parasitic capacitance is
100 pF. If the given receiver voltage is 0.6 V, the required
coupling capacitance should be 50 pF. Fig. 2(c) shows the cal-
culated frequency dependence of TX energy consumption. The
target data rate is limited to 100 kb/s by the bandwidth of the
plastic microelectromechanical system (MEMS) switches. At
the target data rate, the energy of capacitive coupling is two or-
ders of magnitude lower than that of inductive coupling. There-
fore, the capacitive coupling is used in such a low-data-rate and
low-parasitic-capacitance system.

B. System Overview

The overview of the whole system is shown in Fig. 3(a).
The point-to-point communication is achieved by combining
the meter-scale wireline communication on the sheet and the
micrometer-scale proximity communication between the sheet
and the transceiver. This work implements proximity commu-
nication by capacitively coupling the transmitter to the receiver.
The transmitter drives a plate of metal on the TX sheet that cou-
ples to a corresponding plate of routing line on the communica-
tion sheet, and the plate on the other end of the routing line, in
turn, drives the receiver on the RX sheet. The typical pad dis-
tance for the capacitive coupling is 75 m, which corresponds
to 50-pF capacitance. In this application, differential signaling
is required because there is no common ground among the TX,
communication, and RX sheets. The 90 rotation of the TX/RX
sheet can be countered by the other two additional pads.

The communication route is dynamically formed using the
plastic MEMS switches, and the routing information is stored
in the organic nonvolatile memories [2]. The “1”–“0” current
ratio of organic nonvolatile memory exceeds 10 , and the re-
tention time is more than 15 days in air. In practical appli-
cation, the routing on the communication sheet is similar to
the routing of a 2-D field-programmable gate array. With the
increased size of the communication sheet and the increased
number of electronic objects scattered over the sheet, specially
designed programmable switch blocks are required, and the in-
terference between different TX/RX pairs due to crosstalk and
misalignment is inevitable [12]. To simplify the analysis of the
whole communication system, a routing model for nonover-
lapped point-to-point communication is proposed in Fig. 3(b).
The sheet is composed of units, and every unit consists
of four pads. The communication between each two units is
achieved by turning on the adjacent two MEMS switches and
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Fig. 3. (a) Overview of the communication system. (b) Model of the
communication sheet.

the top two routing switches. Thus, only four switches are re-
quired for the point-to-point communication. Since the infor-
mation transmitted over the sheet is confined in a small space
close to ad hoc routed paths, the system is free from the issues
related with radio-frequency band allocation which has already
been tight.

C. Device Structure

The device structure of the communication sheet is shown in
Fig. 4(a). It consists of five low-cost printed sheets: a pad
array for capacitive coupling, two MEMS switching ma-
trices for differential signal routing, a organic nonvolatile
memory array for routing information storage, and an po-
sition-detection coil array. The capacitive-coupling pad
arrays are fabricated on a polyimide film. The side length of
the square pad is 9.7 mm, and the distance between each pad
is 3.0 mm. Silver gate electrodes and polyimide gate dielectric
layers are patterned by using inkjet printing.

The MEMS switching matrix is formed by using inkjet
printing and screen printing. The electrodes for electrostatic
attraction are patterned on a 25- m-thick polyimide mem-
brane. Compared with an organic FET switch, a MEMS switch
provides lower ON-resistance and lower parasitic capacitance,
which contributes to low energy/bit communication. When
9 V is applied to the control electrodes of the MEMS switch,
the resistance changes from 1 M to 20 . The maximum
frequency response of the MEMS switch is 1 kHz.

The position-sensing coil array is manufactured by screen
printing. The inner diameter of the copper coils is 10 mm. Both
the width and spacing of the copper lines are 100 m. The in-
ductance and resistance are 20 H and 17 , respectively. The

Fig. 4. Device structure of communication sheet.

measured result shows that the deterioration of position-detec-
tion sensitivity due to the four sheets above the coil array is only
7% and that this value can be ignored. The principle of the posi-
tion-sensing sheet is similar to the power transmission sheet of
the literature [4]. A voltage of 10 V at a resonance frequency
(2.95 MHz) is applied to the position-sensing cells. When the
distance between the position-sensing coil and the receiver coil
reduces, the output voltage will be increased by 91%.

III. DATA-EDGE-SIGNALING TRANSMITTER

A. DC Wander Effect

For the capacitive coupling, a key constraint to consider is
that, when a long string of “1s” and “0s” is passed through the
transmitter, the signal experiences the dc wander effect. For the
capacitive-coupling system in Fig. 3(a), the series coupling ca-
pacitance yields a high-pass characteristic. In the time domain,
the high-pass filtering passes the time rate change of the voltage
signal . The receiver will receive positive pulses for
rising edges and negative pulses for falling edges. This makes
the detection of the signal more difficult since the dc drift of the
signal causes a loss of noise margin.

B. Data Edge Signaling

Conventionally, quantized feedback is introduced to generate
a complementary signal to compensate the decaying signal
[13]. In this paper, the input non-return-to-zero (NRZ) signal
is converted into a return-to- signal pulse to avoid this
constraint. As shown in Fig. 5(a), compared with the previous
synchronous circuits [14], the proposed asynchronous circuits
have no global clocks, and the operation is triggered by signal
transitions, potentially having the advantages of low power
dissipation.

Fig. 5(b) shows the schematics of the proposed transmitter.
The modulated data are achieved by switching the input data
and the output of the half generator [15]. The edge de-
tector is used to generate the switching signal for the selector
by detecting both the rising and falling edges of the input
data. Fig. 5(c) shows the simulated dependence of the power
consumption on the data-transition probability at 100 kb/s. The
power consumption of the transceiver is proportional to the
data-transition probability. In the conventional synchronous
topology, the transmitted signal changes at every clock cycle,
and the consumed power is constant for different data rates. In
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Fig. 5. Data-edge-signaling transmitter. (a) DC wander effect. (b) Circuit
schematic. (c) Power dependence on data transition.

the proposed asynchronous topology, the power consumption of
the transceiver can be reduced by 48.3% at 50% data-transition
probability.

IV. DC POWER-FREE PULSE DETECTOR

A. DC Power Dissipation of Conventional Receiver

The receiver requirements depend upon the details of the
interconnecting medium and the expected signal degradation
from driver to receiver. Capacitive coupling is implemented by
forming one of the electrodes on the pad of the TX/RX sheet
and the other electrode on the pad of the communication sheet.
When the chip is brought into extremely close proximity, a ca-
pacitor is formed. In this implementation, no mechanism exists
to allow dc input voltage to pass through the same interface as
the ac coupled signals. In the conventional capacitive-coupling
transceiver, the dc level of the received signal is first biased to
a reference voltage, and then, an amplifier and a comparator is
used in the first stage of the receiver to amplify the signal for the
following demodulation [14], [16]. The major disadvantage of

Fig. 6. DC power-free pulse detector. (a) Circuit schematic. (b) Operation
principle.

Fig. 7. Simulated ratio dependence. (a) Voltage bias �� . (b) Power
consumption.

this topology is the large dc power dissipation that occurs even
for no ac input. In the transmitted signal of the communication
sheet, the circuit spends long periods of time with no ac signal.
Power dissipated in these periods is wasted.

B. DC Power-Free Pulse Detector

The design aims to minimize the dc power consumption by
implementing a dynamic threshold receiver and a pulse detec-
tion approach that maximize power efficiency. The proposed dc
power-free pulse detector is basically based on the CMOS in-
verter. As shown in Fig. 6(a), the gate of the inverter is biased to

and capacitively coupled to the received data while the
source of the inverter is biased to and capacitively
coupled to the inverted received data. Fig. 6(b) shows the volt-
ages on nodes A and B and the logical threshold of the inverter.
When the received voltage on node A and the logical threshold

of the inverter are overlapped, the pulse is detected, and the
power is only consumed on this period. Unbalanced inverters
with lower threshold voltages can be used to further reduce the
power consumption. As shown in Fig. 7, for the given received
voltage, the required bias and the power consumption can
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Fig. 8. DC power-free receiver. (a) Circuit schematic. (b) Simulated
waveforms.

be decreased with the increase of the ratio between PMOS and
NMOS.

Fig. 8(a) shows the circuit schematic of the proposed pulse
detector. Two unbalanced inverters are used to detect the rising
and falling edges, respectively, and the detection results are level
shifted to . The simulated waveforms of the received signal
and power supply current of the two inverters are shown in
Fig. 8(b). The proposed pulse detector consumes essentially
zero power dissipation for no ac input.

V. MEASUREMENT RESULTS

A. Performance Summary

A test chip was designed and fabricated in 0.18- m 1P6M
CMOS process, and the microphotograph is shown in Fig. 9(a).
The core area for the TX and RX are 2475 and 975 m , re-
spectively. Fig. 9(b) shows the measurement setup. The TX/RX
chips are bonded to the TX/RX pads on the TX/RX sheet, and
the pads are capacitively coupled to the communication sheet.
To simplify the measurement, the MEMS switching matrices,
the organic nonvolatile memory array, and the position-detec-
tion coil array are removed, and the communication route is laid
out to 60 cm directly.

The measured performance is summarized in Table I. The de-
veloped data edge signaling and the dc power-free pulse detector
enable 107-pJ/bit energy consumption at 100 kb/s. Fig. 10(a)
shows the measured waveforms at 100 kb/s. The transmitted
data are converted to return-to- signal Txout, and the am-
plitude of Txout is 1.8 V. The amplitude of the received signal
Rxin is 0.5 V, and Dataout is the demodulation output. The

Fig. 9. (a) Chip micrographs. (b) Measurement setup.

TABLE I
PERFORMANCE SUMMARY

eye diagram at the maximum data rate of 8 Mb/s is shown in
Fig. 10(b). The maximum data rate is determined by the drive
current of the transceiver and the parasitic capacitance of the
communication sheet. For the given parameters of the commu-
nication sheet, a higher data rate can be achieved by increasing
the drive current of the transmitter and the receiver.

B. Misalignment Tolerance

For the capacitive-coupling system, a critical challenge in
high-performance communication is correctly aligning the pads
on the sheets. In an aligned proximity communication system,
each TX/RX pad lines up perfectly with a routing pad, and the
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Fig. 10. Measurement results. (a) Measured waveforms at 100 kb/s. (b) Eye
diagram at 8 Mbits/s.

pads are pushed together such that their dielectric and passiva-
tion surfaces touch or nearly touch, thus maximizing the signal
coupled between the pads, reducing the parasitic capacitance,
and saving the power. With misaligned pads, one transmitter
will be coupled to several other receivers, simultaneously re-
ducing the intended signal and increasing crosstalk to the other
receiver.

Fig. 11(a) shows the measured sensitivity requirement for
the horizontal misalignment and the vertical pad distance. The
contour represents the required minimum to achieve the
capacitive-coupling communication. For the normal 75- m pad
distance, which is equal to the sheet thickness, the sheet can
operate up to 3.75-mm displacement. The maximum tolerable
displacement is 7.5 mm, which corresponds to the 77% of the
pad size.

The sensitivity of the receiver is tuned by the source bias
voltage of the inverter. The amplitude of the received voltage
can be approximated by . With
the increased size of the communication sheet, the parasitic ca-
pacitance of the sheet will be increased, and therefore, the re-
ceived voltage will be reduced. The tradeoff between the RX
sensitivity and the power consumption is shown in Fig. 11(b).
By reducing the bias voltage , the sensitivity of
the receiver can be increased and communication distance can
be extended but the power consumption will be increased. The
power consumption of the receiver can be further reduced by
lowering the supply voltage. Fig. 11(c) shows the measured
supply voltage dependence of power consumption. The voltages

and represent the gate and source biases,

Fig. 11. (a)�� dependence of displacement. (b) Tradeoff between power and
sensitivity. (c) Supply voltage dependence of power consumption.

Fig. 12. Comparison with the state-of-the-art wireless and wireline
communications.

respectively. Lower power consumption is achieved with lower
supply voltage .

Fig. 12 shows the comparison with the state-of-the-art
communication systems [17]–[20]. Wireline communication
refers to the transmission of data over a wire-based commu-
nication technology. Examples include telephone networks,
cable television, and fiber-optic communication. Alternatively,
wireless communication is used to describe telecommunica-
tions in which electromagnetic waves carry the signal over
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the communication path. Examples of short-distance wireless
technology include wireless LAN and ultrawideband. Com-
pared to wireless communication, the communication sheet
fills the space around it with a nonradiative electric field instead
of irradiating the whole environment with electromagnetic
waves. As shown in Fig. 12, the proposed communication
method achieves lower energy consumption than conventional
wireless communication, thus realizing a low-energy feature of
wireline communication with an easy-to-use feature of wireless
communication.

VI. CONCLUSION

A transceiver for the printable cm cm communica-
tion sheet combining the capacitive coupling and the point-to-
point connection from TX to RX on the sheet has been de-
veloped. The transceiver with a data-edge-signaling transmitter
and dc power-free pulse detector achieves the lowest energy of
107 pJ/bit at 100 kb/s in the wireless communications at a dis-
tance of 60 cm in 0.18- m CMOS. The proposed data-edge-sig-
naling transmitter avoid the dc wander effect by converting the
input NRZ signal to return-to- signal. For the 50% data-
transition probability, the power consumption of the transceiver
can be reduced by 48.3%. The proposed dc power-free detector
has essentially zero power dissipation for no ac input, and the
four-pad differential signaling scheme can tolerate 7.5-mm mis-
alignment, which corresponds to 77% of the pad size.
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