設計技術から見た 半導体集積回路の省電力技術

東京大学

大規模集積システム設計教育研究センター(VDEC)¹ 生産技術研究所²

高宮 真

Outline

- ◆ 低電力設計技術の動向
 (1)低電圧、(2)細粒度制御、(3)3次元
- ◆ ロジック回路の電源電圧の下限(V_{DDmin})
- ◆ 細粒度基板バイアス制御による低電力化
- ◆ 3次元SSDのNANDフラッシュ向け昇圧回路に よる低電力化

(SSD: Solid State Drive)

電源電圧(V_{DD})の低減の必要性

■ 90nm→65nm→45nmとV_{DD}=1Vが続いたが、 今後は電力と信頼性の観点から、V_{DD}の低減が必須

エネルギー効率最適は低VDDで実現

◆ Power, Delay積(PD積=エネルギー)はV_{DD}=0.2-0.3Vで最小 →速度が問われないアプリでは<mark>低V_{DD}がenergy efficient</mark>

Energy Efficientな超低V_{DD}ロジック

■超低V_{DD}ロジックに関する初めての企業(Intel)からの報告

■ V_{DD}=230mVまで動作はするが、320mVがエネルギー効率最高

H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar, "A 320mV 56µW 411GOPS/Watt ultralow voltage motion estimation accelerator in 65nm CMOS," IEEE ISSCC, pp. 316-317, Feb. 2008.

時空間の細粒度電圧制御がトレンド。

細粒度制御には3次元技術との連携が必須

細粒度と3次元に対する我々の取り組み。

- ◆ 電源電圧の下限(V_{DDmin})の追求
 ●チップ内トランジスタばらつき測定^[1]
 ●ロジック回路のV_{DDmin}^[2-3]
- ◆ 空間的細粒度制御
 ●製造後の細粒度基板バイアス制御による低電力化^[4]
 ●メニーコア向けテスト手法^[5]
 ●3次元積層を用いたオンチップDC-DCコンバータ^[6-7]
- ◆ 時間的細粒度制御
 - ●電源電圧、基板バイアスを高速に変化させる加速回路^[8-11]
 ●電源ノイズキャンセル回路^[12]
- ◆ 3次元集積技術
 ●3次元SSDのNANDフラッシュ向け昇圧回路による低電力化^[13]

Outline

◆ 低電力設計技術の動向
 (1)低電圧、(2)細粒度制御、(3)3次元

◆ ロジック回路の電源電圧の下限(V_{DDmin}) ◆

- ◆ 細粒度基板バイアス制御による低電力化
- ◆ 3次元SSDのNANDフラッシュ向け昇圧回路に よる低電力化

(SSD: Solid State Drive)

Minimum Operating Voltage (V_{DDmin})

- V_{DDmin} is defined as the supply voltage (V_{DD}) when the RO's stop oscillation.
- RO's are useful V_{DDmin} detectors.

チップ内トランジスタばらつき

11

◆ チップ内V_{TH}ばらつきは4mmの範囲内でランダム →細粒度の基板バイアス制御では補償不可

Analysis of Origin of V_{DDmin}

RO Circuits to Enable V_{DDmin} Measurement

13

The low swing output of RO is amplified to 1-V swing by the output buffer.

V_{DD} Dependence of Oscillation Frequency variation

14

Relative frequency variations increases with reduced V_{DD}.

-ト遅延のV_の依存

■ 低V_{DD}回路の問題: 低速、PVTばらつきに敏感 ■ 対策: 並列動作、adaptive制御

Measured Die-to-Die Distribution of V_{DDmin}

Analysis of Die-to-Die V_{DDmin} Variations

18

Summary of Measured V_{DDmin}

Comparison of Measured and Calculated V_{DDmin}

Reason Why Average V_{DDmin} Increases with # of RO Stages

Comparison of Monte Carlo and Model

22

Adaptive Body Bias Control to Reduce V_{DDmin}

The body bias of pMOS is adaptively controlled to minimize V_{DDmin} and the body bias of nMOS is fixed.

Fine-Grain Adaptive Body Bias Control to Reduce V_{DDmin}

When inverter-by-inverter body bias is applied, V_{DDmin} is drastically reduced to 43mV. But it is impractical.

V_{DDmin} Dependence on Body Bias of Both nMOS and pMOS

Common body bias control allows to reduce V_{DDmin} by only 4mV.

Outline

- ◆ 低電力設計技術の動向
 (1)低電圧、(2)細粒度制御、(3)3次元
- ◆ ロジック回路の電源電圧の下限(V_{DDmin})
- ◆ 細粒度基板バイアス制御による低電力化
- ◆ 3次元SSDのNANDフラッシュ向け昇圧回路に よる低電力化

(SSD: Solid State Drive)

細粒度基板バイアス制御による低電力化

1つの機能ブロックを8領域に等分割

■ 基板バイアスのグローバル最適化により電力を19%以上削減 ■ post-fabrication tuningにより設計ばらつきを補正

Outline

- ◆ 低電力設計技術の動向
 (1)低電圧、(2)細粒度制御、(3)3次元
- ◆ ロジック回路の電源電圧の下限(V_{DDmin})
- ◆ 細粒度基板バイアス制御による低電力化
- ◆ 3次元SSDのNANDフラッシュ向け昇圧回路に よる低電力化

(SSD: Solid State Drive)

Importance of 20V generator in NAND

⊗ Write time is dominant over read time.
 →Write 8 to 16 chips simultaneously.
 ⊗ 20V or higher program voltage for write
 →Energy during write should be reduced.

High-speed low-power 20V generator is required.

Conventional SSD with charge pump

Each NAND flash has charge pump for 20V. ⁽²⁾ 5 to 10% area of NAND flash chip!

Issues on charge pump

Serial MOS diodes lose energy. Large number of stages for low V_{DD}

Voltage scalability of charge pump

Proposed 3D-SSD with boost converter

② Realizing low power and low cost

Boost converter (shared)

Advantages of Boost converters

Frequency, duty cycle → Conversion ratio (V_{OUT}/V_{DD}) Inductance → Output current

- High conversion ratio, large output current
- High efficiency
- Small chip area
- **⊗** Off-chip inductor

Boost converter & NAND Co-operation

Comparison of energy during write

*K. Takeuchi, et al., ISSCC 2006.

Summary of key features

	This work (Measured)	Charge Pump (Simulated)
Transient energy (0→15V)	30nJ (12%)	253nJ (100%)
Rising time (0→15V)	0.92µs (27%)	3.45µs (100%)
Chip area (HV-MOS)	0.175mm² (15%)	1.19mm ² (100%)
Technology (High voltage MOS)	20V CMOS process	
Chip area (Adaptive controller)	0.188mm ²	
Technology (Adaptive controller)	1.8V 0.18µm standard CMOS	
Supply voltage	1.8V	1.8V

まとめ

◆低電力設計技術の3つのキーワード →(1)低電圧、(2)細粒度制御、(3)3次元

◆チップ内製造ばらつきはランダム(90nm CMOS, 4mm) →細粒度制御では対処不能 →一方、設計ばらつきは細粒度制御で対処可能

◆リングオシレータの段数を11段から1M段にすると、
 V_{DDmin}は90mVから 343mVに増加
 →大規模ロジックの低電圧化は困難
 →革新的な回路技術が必要

◆ 3次元による低電力化の例 →SSD

- [1] D. Levacq, T. Minakawa, M. Takamiya, and T. Sakurai, "A Wide Range Spatial Frequency Analysis of Intra-Die Variations with 4-mm 4000 x 1 Transistor Arrays in 90nm CMOS," IEEE Custom Integrated Circuits Conference (CICC), San Jose, USA, pp. 257-560, Sep. 2007.
- [2] T. Niiyama, P. Zhe, K. Ishida, M. Murakata, M. Takamiya, and T. Sakurai, "Dependence of Minimum Operating Voltage (V_{DDmin}) on Block Size of 90-nm CMOS Ring Oscillators and Its Implications in Low Power DFM," IEEE International Symposium on Quality Electronic Design (ISQED), San Jose, USA, pp. 133-136, March 2008.
- [3] T. Niiyama, P. Zhe, K. Ishida, M. Murakata, M. Takamiya, and T. Sakurai, "Increasing Minimum Operating Voltage (V_{DDmin}) with Number of CMOS Logic Gates and Experimental Verification with up to 1Mega-Stage Ring Oscillators," International Symposium on Low Power Electronics and Design (ISLPED), Bangalore, India, pp. 117-122, Aug. 2008.
- [4] Y. Nakamura, D. Levacq, L. Xiao, T. Minakawa, T. Niiyama, M. Takamiya, and T. Sakurai, "1/5 Power Reduction by Global Optimization Based on Fine-Grained Body Biasing," IEEE Custom Integrated Circuits Conference (CICC), San Jose, USA, pp. 547-550, Sep. 2008.
- [5] T. Niiyama, K. Ishida, M. Takamiya, and T. Sakurai, "Expected Vectorless Teacher-Student Swap (TSS) Test Method with Dual Power Supply Voltages for 0.3V Homogeneous Multi-core LSI's," IEEE Custom Integrated Circuits Conference (CICC), San Jose, USA, pp. 137-140, Sep. 2008.
- [6] K.Onizuka, H. Kawaguchi, M. Takamiya and T. Sakurai, "Stacked-chip Implementation of Onchip Buck Converter for Power-Aware Distributed Power Supply Systems," IEEE Asian Solid-State Circuits Conference (A-SSCC), Hangzhou, China, pp. 127-130, Nov. 2006.
- [7] K. Onizuka, K. Inagaki, H. Kawaguchi, M. Takamiya, and T. Sakurai, "Stacked-Chip Implementation of On-Chip Buck Converter for Distributed Power Supply System in SiPs," IEEE Journal of Solid-State Circuits, Vol. 42, No. 11, pp. 2404 - 2410, Nov. 2007.

- [8] K.Onizuka and T. Sakurai, "V_{DD}-Hopping Accelerator for On-Chip Power Supplies Achieving Nano-Second Order Transient Time," IEEE Asian Solid-State Circuits Conference (A-SSCC), Hsinchu, Taiwan, pp. 145-148, Nov. 2005.
- [9] K. Onizuka, H. Kawaguchi, M. Takamiya, and T. Sakurai, "V_{DD}-Hopping Accelerators for On-Chip Power Supply Circuit to Achieve Nanosecond-Order Transient Time," IEEE Journal of Solid-State Circuits, Vol. 41, No. 11, pp. 2382 - 2389, Nov. 2006.
- [10] D. Levacq, M. Takamiya and T. Sakurai, "Backgate Bias Accelerator for 10ns-order Sleep-to-Active Modes Transition Time," IEEE Asian Solid-State Circuits Conference (A-SSCC), Jeju, Korea, pp. 296-299, Nov. 2007.
- [11] D. Levacq, M. Takamiya, and T. Sakurai, "Backgate Bias Accelerator for sub-100 ns Sleepto-Active Modes Transition Time," IEEE Journal of Solid-State Circuits, Vol. 43, No. 11, pp. 2390 - 2395, Nov. 2008.
- [12] Y. Nakamura, M. Takamiya, and T. Sakurai, "An On-Chip Noise Canceller with High Voltage Supply Lines for Nanosecond-Range Power Supply Noise," IEEE Symposium on VLSI Circuits, Kyoto, pp. 124-125, June 2007.
- [13] K. Ishida, T. Yasufuku, S. Miyamoto, H. Nakai, M. Takamiya, T. Sakurai, and K. Takeuchi, "A 1.8V 30nJ Adaptive Program-Voltage (20V) Generator for 3D-Integrated NAND Flash SSD," IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, pp. 238-239, Feb. 2009.