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Abstract—A capacitively coupled probing circuit with a novel
de-skewer, a low-pass filter and a high-sensitivity receiver is
proposed to realize a membrane-based wafer-level simultaneous
testing robustly. The de-skewer can be designed by only digital
core transistors and has stable feed-forward architecture. The
receiver with the low-pass filter can suppress the undesirable
ringing caused by the complex wiring structure in the probe card.
A probe chip and a 300 mm DUT-wafer are fabricated ina 1.2 V
90 nm technology and the measured power consumption of RX
core is 0.5 mW at 1 Gbps operation. The BER is improved below
1072 gver almost all UI range when the de-skewing function is
turned on.

Index Terms—Wafer test, capacitive coupling, crosstalk, re-
ceiver, de-skewer.

I. INTRODUCTION

HE development of three-dimensional system in package
T (3D-SiP) technologies has been accelerated to improve
the LSI performance. In the 3D-SiP, many dies are stacked and
if the yield of die is low, the yield of 3D-SiP falls dramatically.
Thus it is important to obtain the Known Good Die (KGD) ef-
fectively. Wafer-level simultaneous testing (WLST) where all
chips on a wafer are tested and burned in at the same time is
preferable in reducing the cost of selecting KGDs. At present,
however, it is difficult to realize the WLST because a huge load
is required for the stable contact of all test pins on the wafer.
Recently, a low-cost membrane-based wafer-level testing tech-
nique has been disclosed which makes use of the atmospheric
pressure and 700 kg of force can be uniformly distributed over
a 300 mm wafer [1]. Yet, assuming that one bump needs 4 g
of force to make a stable contact, the probing equipment has
to distribute 1.2 ton of force over the 300 mm wafer uniformly
as shown in Fig. 1. One promising technique to reduce the re-
quired load from 1.2 ton to 700 kg is the combination use of the
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contacting bumps for power supply and the non-contact inter-
faces such as the capacitively coupled interfaces (CCls) [2]-[6],
the inductively coupled interfaces (ICIs) [7]-[9] and the RF in-
terfaces (RFIs) [10]-[12] for digital pins. Non-contact probing
techniques for the WLST [7], [11], [12] have been proposed, but
they are costly because they need probing chips built specific to
a certain product.

In this paper, we propose the capacitively coupled non-con-
tact probing circuit for the low-cost membrane-based WLST.
Section II compares the non-contact interfaces for the WLST
and discusses the effect of cross talk. Section III describes the
proposed WLST with the CCI. Section IV explains the novel
de-skewer and shows simulation results. Section V presents the
details of the receiver circuit. Section VI summarizes experi-
mental results, and Section VII concludes the paper.

II. NON-CONTACT INTERFACES FOR WLST

Fig. 2 compares non-contact interfaces for the WLST. The
required number of pads per channel is two for the ICI, and one
for the RFI and the CCI. Considering the interconnect conges-
tion in the probe card and the pad-limited nature of the chip,
the RFI and the ICI are prohibitive. This situation also hinders
the use of differential signaling [5]. Although the RFI and the
ICI can be implemented in the chip, they need probing chips
built specific to a certain product and cannot be adopted for the
low-cost WLST.

The CCI has the advantage of being able to use the bonding
pads for a part of the non-contact interface and a coupling pad
can be made by just a metal plate, so a fine process is not needed.
On the other hand, the RFI and the ICI require special antennas
and coils, respectively. These facts also indicate that the area
overhead of the CCI in the device-under-test (DUT) will be nil
when the TX and RX can be made under the bonding pads, but
the RFI and the ICI need extra footprints for a pair of TX and
RX,e.g.,0.13 mm? [10] and 0.03 mm? [8], because they require
special antennas and coils, respectively.

All interfaces have achieved the data rate over 1 Gbps, which
is sufficient to cover the at-speed test for most of the next-gen-
eration SoC’s for mobile and/or consumer digital applications.

The only disadvantage of the CCI is its short transmission
distance. In the proposed WLST, however, the distance between
the pads is almost zero as described in Section III, so the trans-
mission distance does not become a problem. Moreover, the al-
most-zero-distance pads make the CCI tolerant to cross talk.

0018-9200/$26.00 © 2011 IEEE
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Fig. 1. Conventional membrane-based wafer-level testing technique.
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Fig. 2. Comparison of non-contact interfaces.

Fig. 3(a) illustrates the simplified interface models of the ICI
and the CCI. The parameter d is the coupling distance between
the interfaces which have the base length L and the height A.
The parameter s is the separation distance between adjacent in-
terfaces. In the ICI, assuming only the magnetic field coupling
for simplicity, the signal transfer S21 and the cross talk S31 and
S41 are approximated as

2NN, L% 1

Zv mJ(L]2)? + d?
NiNsL?y 1

Zy  2m(L)2+s)
NN, 1

Z1 2m\/d® + (L/2 + s)?

where N1, No, Ny and N4 are the number of turns, Z; is the
output impedance and f is the transmission signal frequency.
In the CCI, assuming that the parasitic capacitance Cp is much
larger than the coupling capacitance, the signal transfer S21 and
the cross talk S31 and S41 are approximated as
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The calculation results are shown in Fig. 3(b) with the typical
parameters (. = 100 pm, d = 5 pm and b = 1 pm) for the

WLST. The differences between S21 and S31 in the ICI and the
CClI are 13 dB and 46 dB when the separation distance is 10 gem,
respectively. It is sufficient to ignore the effect of cross talk for
the CCI. These results show that the CCI can place pads more
closely and is more area-efficient for the WLST than the ICI.

III. WAFER-LEVEL SIMULTANEOUS TESTING

The probe card for the proposed WLST consists of five layers
including a main board, anisotropic conductive elastomers
(ACE1, ACE2), an interposer and a polyimide membrane
as shown in Fig. 4. The tester chips and the probe chips are
mounted on the main board. The tester chip implements simple
tester functions and the probe chip has CCI. ACE1 and ACE2
can remove the differences in level between the main board and
the interposer and between the interposer and the polyimide
membrane, respectively. The polyimide membrane is very thin
film which has the thickness of 25 pm, and has contacting
bumps and non-contact pads. The contacting bumps can be
used not only for power supply but also for testing ultra-high
speed interfaces and analog and RF functions if needed. The
expensive main board is common to all products and the inex-
pensive organic interposer and polyimide membrane are to be
re-designed and built when a product under test is changed, and
thereby the total cost of the probe card for WLST can be kept
low.

To ensure the stable non-contact probing, a two-stage depres-
surization technique is developed. Pumping the air out of the
space between the probe card and the wafer, the probe card is
pressed to the wafer by 10 N/cm? of the atmospheric pressure.
This technique makes it possible to distribute 700 kg of force
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Fig. 3. (a) Simplified interface models and (b) calculation results with L = 100 gm,d = 5 pmand 2 = 1 pzm.
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Fig. 4. Proposed wafer-level simultaneous testing technique with the capacitively coupled interface.

over the 300 mm wafer uniformly [1]. When the spaces between
the interposer and the polyimide membrane and between the
polyimide membrane and the wafer are equally depressurized
to 1 N/cm?, non-contact pads on the membrane stay away from
the pads on the wafer. As turning the vacuum valve to depres-
surize the space between the interposer and the polyimide mem-
brane to 2 N/cm?, the polyimide membrane adheres to the wafer.
Then the distance between the non-contact pads becomes almost
zero, but the surface oxide of the wafer prevents them from con-
necting electrically. Since the almost all force is distributed to
the contacting bumps, the non-contact pads are pressed softly to
the wafer and have no reliability issue.

Fig. 5 shows the system block diagram of the proposed
WLST. The tester chips implement simple tester functions

including timing and control signal generation, test pattern
buffing and test results compression, reducing the power and
cost of communication between the main tester equipment
and the probing system. The tester chip also has power-supply
disconnecting functions for breakdown chips. The TXs on the
probe chip and the DUT-wafer are simple CMOS drivers to
share the bonding pads with the normal 1/Os. The pads on the
polyimide membrane and the DUT-wafer form the coupling
capacitance. The signals travel between the probe chip and the
DUT-wafer through the complex wiring structure depicted in
Fig. 4. The total length of the wiring ranges around 20 mm and
diverse reflections occur at interfaces among layers. Conse-
quently, de-skewing function should be implemented for each
digital channel.
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Fig. 6. Block diagram of feed-forward all-digital de-skewer.

IV. FEED-FORWARD ALL-DIGITAL DE-SKEWER

To remove the skews between channels, a low-power and
small-area de-skewing circuit, namely, Feed-forward All-digital

De-skewer (FAD) in Fig. 6 is proposed. The FAD has two ad-
vantages over conventional de-skewing methods such as a clock
data recovery [13]. One is that the FAD can be designed using
only digital core transistors and the other is the feed-forward
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Fig. 7. Output waveforms of flip-flops in FAD.

architecture which makes the FAD fast and stable. The FAD is
based on a time-to-digital converter [14], and uses delay ele-
ments not only detecting the phase error but also delaying the
timing of input data to remove the skews between channels. The
delay element is constantly adjusted to show one eighth of a
clock cycle by a simple delay-locked loop. A bubble error cor-
rector and a third order moving average filter are implemented
to mitigate the effect of undesired signals by accidental errors.

For a certain channel, if the rising edges of delayed Din
and CLK match at Flip-Flop “FF5”, D1y is considered to rise
about a half clock cycle before the CLK rising edge, because
the delay element is constantly adjusted to show one eighth
of a clock cycle. Then, Din should be delayed about a half
clock cycle to maximize the margin in synchronization which
occurs at Flip-Flop “FF¢” by using CLK bar. Thus, after the
bubble error corrector and the third order moving average dig-
ital filter, the LUT-based adaptive switch selector selects the
switch “SW35” and Dpapeyt 18 delayed a half clock cycle for
Din by the delay elements. On the other hand, if Dy rising
edge comes a bit earlier (later), the matching edge is captured
at location “FFy”(“FF7 ) and the switch “SWy”(“SW7”) is
selected. Thus, the rising edge of Dpapout is always delayed a
half clock cycle for the rising edge of the CLK. When the FAD
receives continuous same data streams like “00...” or “11 ...
7, the switch “SW1” or “SWyg” is incorrectly selected, because
all Flip-Flops output 0 or 1 as shown at the timing (i) or (ii)
in Fig. 7, respectively. To avoid such a consequence, Flip-Flop
“FFy” is added. Since the delay element is constantly adjusted
to show one eighth of a clock cycle, there is one clock cycle
delay between the data at Flip-Flops “FF;” and “FFgy”. There-
fore when the same data is captured at the location “FF;” and
“FFy”, D1y is considered to be the continuous same data. Then
the third order moving average digital filter does not capture the
output of the bubble error corrector and the correct switch is
kept selecting.

SPICE simulations have been performed to verify the effec-
tiveness of the proposed de-skewing circuit using the three dif-
ferent delayed data such as —350 ps, 0 ps and 350 ps, as shown
in Fig. 8. At first, Doyt shows the same delay as D1x. After
a few cycles, the edges at Doyt become almost same, which
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means that the skews between data are removed. Fig. 8 also in-
dicates the advantages of the FAD that the FAD does not needs
the special calibration patterns to remove the skews and the ad-
equate output switch can be selected quickly.

V. RECEIVER CIRCUIT

Another point of difficulty in the membrane-based CCI over
a chip-to-chip interface lies in the transmission nature of wiring
and the smaller received signal due to the large capacitance
of the transmission line up to 2 pF. To overcome the issue, a
low-pass filter (LPF), which consists of the poly resistor and the
capacitance of the electrostatic discharges (ESDs), is inserted
before a preamplifier as shown in Fig. 9. The LPF can suppress
the undesirable ringing caused by the diverse reflections be-
cause the frequencies of the reflections are usually higher than
the signals in the proposed WLST. A DC-cutting capacitor is
inserted to eliminate the interference between prechargerl and
precharger2 even if the precharge levels are different due to
process variations.

A high-sensitivity receiver circuit is introduced, denoted as
weak-feedback receiver in Fig. 9. The previously reported re-
ceiver in [4] is robust but needs intermittent resetting of circuits
which is difficult to implement in the test environment. In the
proposed RX circuit, the feed-back node is not connected di-
rectly to the signal path compared to the conventional RX which
has the direct feed-back path [6] as shown in Fig. 10. So the
effect of the feed-back in the proposed RX becomes weaker.
The minimum receivable input amplitude of the proposed RX
is smaller than the conventional inverter cross-coupled RX, that
is, the proposed RX has the higher sensitivity over large PVT
variations. While receiving a same signal continuously, the node
N2 of RX in Fig. 9 comes close to VDD or VSS and the sensi-
tivity degrades at the next data change. The inverter connected
an input with an output makes the voltage of N2 to leave slightly
away from VDD or VSS and improves the sensitivity at such
situation. As a result, the minimum receivable amplitude of the
proposed RX is 50 mV.

VI. EXPERIMENTAL RESULT

Fig. 11 shows a full view of the proposed WLST. A 300 mm
wafer is loaded under the probe card from a cassette and then
pads on the wafer and the polyimide membrane are automati-
cally aligned. When test is running, the probe card is put on the
wafer and is pressed by the atmospheric pressure. For the sake
of the flexible evaluation, FPGAs are mounted on the probe card
as a substitute for tester chips.

The probe chip and the DUT-wafer are fabricated with a
90 nm 1.2V CMOS technology. Two types of pad are im-
plemented as shown in Fig. 12: one is an uncovered pad and
the other is an insulator covered pad both of which worked
successfully. Two versions of pad size, 80 um x 80 pm and
160 zm x 160 pm, are tried but turned out that 80 m x 80 ym
is sufficient even with the maximum alignment error which is
less than 5 zsm over the whole 300 mm wafer. The probe chip
has the pseudo-random bit sequence (PRBS) generator and the
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Fig. 9. (a) Proposed receiver circuit and (b) Simulation results.

bit error-rate (BER) tester for the high-speed signal test and the
DUT-wafer has a simple function for the loop-back test.

Fig. 13 shows the measured output waveforms of the pro-
posed receiver which indicate that the circuit can receive up to
1 GHz clock and 1 Gbps data. The 4-channel 1 Gbps data can
be received successfully without cross talk between channels. In
the single-ended interface, the power line noise is transformed
into the RX input noise and degrades the BER. To avoid such
situation, a large amount of on-chip and off-chip decoupling ca-
pacitors is placed in this prototype WLST. In the production en-
vironment, since there is little space to place the decoupling ca-
pacitors, the technique to make the RX insensitive to the power

line noise and the scheme to decrease the power line impedance
will be necessary.

The power consumption is 0.5 mW/channel for a RX core at
1.2 V 1 Gbps operation as shown in Fig. 14.

Two transmission lines which have the different lengths of
10 mm and 20 mm are implemented in the probe card to confirm
the effectiveness of the FAD as shown in Fig. 15. When signals
bypass the FAD, there is about 150 ps skew between signals (A)
and (D). On the other hand, when signals go through the FAD,
the skew between signals (B) and (C) is removed successfully.
Fig. 16 shows the measurement results of the BER at 1 Gbps
operation. When the de-skewing function (FAD) is turned off,
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the BER is measured to be larger than 10~° but the BER is Table I shows the performance summary. The power con-
improved below 10 ~!2 over almost all unit-interval (UI) range  sumption of the proposed RX at 1 Gbps operation is 0.7 mW
when the FAD is turned on. Fig. 16 indicates that the FAD can  for the probe chip and 0.5 mW for the DUT-wafer. RX for
also enhance the jitter tolerance. DUT is smaller in size than RX for a probe chip because the
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LPF is not needed for the latter since there is no long intercon-
nect after the coupling capacitor. Since all functions are realized
by digital core transistors and the feed-forward control is em-
ployed, the area is as small as 0.004 mm?/channel and the mea-
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sured power is 1.2 mW/GHz/channel, which should be com-
pared with 0.3 mm?/channel of area and 6.4 mW/GHz/channel
of estimated power achieved by a previously-reported DLL-
based clock de-skewer [15].
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TABLE 1
PERFORMANCE SUMMARY
Technology 90nm CMOS
Supply voltage 1.2V
Data rate 1Gbps
Bit Error Rate <107
RX for probe chip 0.7mW
Power@1Gbps RX for DUT-wafer 0.5mwW
FAD 1.2mW
RX for probe chip 270pum?
Area size RX for DUT-wafer 128um?
FAD 4000pm?

VII. CONCLUSION

The proposed wafer-level simultaneous testing system has
two features. One is the low-cost membrane based probing
technique with use of the atmospheric pressure and the other
is the capacitively coupled non-contact probing circuit. The
FAD consumes 1.2 mW/GHz/channel and the BER is im-
proved below 10 *2 over almost all UI range when the FAD
is turned on. The weak-feedback receiver with the LPF has
higher sensitivity over large PVT variations and consumed
0.5 mW/channel at 1.2 V 1 Gbps operation. The overhead area
of the DUT-wafer for using the proposed non-contact scheme
is only 128 pxm?/channel because the bonding pad can be used
for the signaling.

The proposed techniques make it possible to test all chips on
the wafer simultaneously and reduce the test cost dramatically.
Yet the power supply requires the contacting bumps and the
further work will focus on developing the capacitively coupled
non-contact power supply.
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