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Abstract—A shoe insole pedometer, which consists of a piezo-
electric energy harvester and a 2 V organic pedometer circuit, has
been developed as a first step toward the application of flexible
large-area energy harvesting. A pseudo-CMOS 14 bit step counter
records the number of steps up to 16383 steps using the harvested
power. To increase the noise margin of the pseudo-CMOS logic cir-
cuits, a negative voltage is generated by an organic charge pump
circuit and is applied to the pseudo-CMOS inverters and trans-
mission gates in the flip-flops in the step counter. A pseudo-CMOS
Schmitt trigger inverter used to feed clean square pulses to the step
counter is presented. This paper describes the details of the insole
pedometer and providesmeasurement results and some discussion.

Index Terms—Charge pump, energy harvesting, organic large-
area electronics, piezoelectric film, pseudo-CMOS, PVDF.

I. INTRODUCTION

E NERGYharvesting is an enabling technology for realizing
anambientpowersupply forwireless sensornodesandmo-

bile devices. Using flexible photovoltaic cells and piezoelectric
films, we can readily harvest ambient energy if flexible energy
harvesters can be realized. This type of integration will broaden
the range of applications of flexible, large-area electronics.
Conventional silicon circuits, however, are not the best can-

didates for realizing flexible large-area energy harvesters be-

Manuscript received May 05, 2012; revised June 10, 2012; accepted August
24, 2012. Date of current version December 31, 2012.This paper was approved
by Guest Editor Uming Ko. This work was supported in part by JST/ERATO
and Special Coordination Funds for Promoting and Technology.
K. Ishida was with the Institute of Industrial Science, University of Tokyo,

Tokyo 153-8505, Japan, and is now with Dresden University of Technology,
01069 Dresden, Germany (e-mail: koichi.ishida@tu-dresden.de).
T.-C. Huang was with the Institute of Industrial Science, University of Tokyo,

Tokyo 153-8505, Japan, and is now with TSMC North America, San Jose, CA
95134 USA.
K. Honda was with the Institute of Industrial Science, University of Tokyo,

Tokyo 153-8505, Japan, and is now with NTT Microsystem Integration Labo-
ratories, Atsugi 243-0198, Japan.
Y. Shinozuka, H. Fuketa, and T. Sakurai are with the Institute of Industrial

Science, University of Tokyo, Tokyo 153-8505, Japan.
T. Yokota, T. Sekitani, and T. Someya are with the Department of Electrical

Engineering and Information Systems, School of Engineering, University of
Tokyo, Tokyo 113-8654, Japan.
U. Zschieschang and H. Klauk are with Max Planck Institute for Solid State

Research, 70569 Stuttgart, Germany.
G. Tortissier was with the Research Center for Advanced Science and Tech-

nology, University of Tokyo, Tokyo 153-8904, Japan, and is nowwith the Nikon
and Essilor International Joint Research Center, Kawasaki 213-0012, Japan.
H. Toshiyoshi is with the Research Center for Advanced Science and Tech-

nology, University of Tokyo, Tokyo 153-8904, Japan.
M. Takamiya is with the VLSI Design and Education Center, University of

Tokyo, Tokyo 153-8505, Japan.
Digital Object Identifier 10.1109/JSSC.2012.2221253

cause they are mechanically hard, and therefore difficult to fit
to curved surfaces such as shoes. In energy-harvesting applica-
tions, the harvested power is small and the voltage is low (e.g., 2
V) owing to the limited capability of harvesters. Organic circuits
typically consume less power, since their operation speed is low.
In addition, self-aligned monolayer (SAM) technology [1] real-
izing 2 V operation is available. Organic circuits are therefore
suitable for energy-harvesting applications.
The stable pMOS semiconductor material DNTT [2] can

be used in organic circuits. However, the mobility of organic
nMOS transistors is almost one order of magnitude smaller
than that of pMOS transistors in our current technology. In
organic circuit design, all-pMOS circuits are often used. A
pseudo-CMOS inverter, one of the all-pMOS circuits, has
been proposed [3]. The output transistors in the pseudo-CMOS
inverter operate complementarily. The pseudo-CMOS inverter,
therefore, has high gain, but it requires a negative voltage bias.
The operation of all-pMOS circuits without a negative voltage
bias is not robust, and the noise margin is small because of their
rationed-logic nature. Thus, the main challenge in the design of
organic circuits for piezoelectric energy harvesting is the robust
operation (e.g., the signal integrity in counters) of all-pMOS
circuits at a low supply voltage.
To address this challenge, we have proposed an organic in-

sole pedometer with a piezoelectric energy harvester as the first
step toward ambient energy harvesting using organic electronics
[4]. To increase the noise margin of all-pMOS logic circuits
based on pseudo-CMOS inverters, a negative voltage is gener-
ated by an organic charge pump circuit and applied as the bias
of pseudo-CMOS inverters. A pseudo-CMOS Schmitt trigger
inverter used to feed clean square pulses to the logic circuits
is also proposed. This paper describes the details of the insole
pedometer and provides measurement results and some discus-
sion. In Section II, we give an overview of the proposed insole
pedometer. In Section III, we give a detailed description of the
circuit design. In Section IV, we present the experimental results
and discussion. Finally, conclusions are given in Section V.

II. OVERVIEW OF INSOLE PEDOMETER

Fig. 1 shows an outline of the proposed insole pedometer. A
polyvinylidene difluoride (PVDF) sheet is used as a piezoelec-
tric energy harvester. Since the output current of the harvester
is proportional to its area, the sheet is cut into small pieces and
rolled to increase the total area. One of the PVDF rolls is used for
pulse generation to detect steps. Each time the insole is pressed
by the foot during walking, the PVDF roll generates a pulse. The

0018-9200/$31.00 © 2012 IEEE
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Fig. 1. Outline of the proposed insole pedometer.

Fig. 2. Photograph of the prototype insole pedometer.

remaining PVDF rolls are used in the power supply for the or-
ganic circuits. The organic circuits are implemented with a 2 V
pMOS process and are located under the array of PVDF rolls to
shape the detected pulses into clean square waves and count the
number of steps.
Fig. 2 shows a photograph of the prototype insole pedometer,

including the piezoelectric energy harvester and 2 V organic cir-
cuits. Twenty-one PVDF rolls are embedded on the plastic base-
board. To show the organic circuits under the rolls, two rectan-
gular areas have been cut out. The 2 V organic circuits are im-
plemented separately and connected to each other by a flexible
PCB. The total length of the pedometer is 22 cm.
A block diagram of the insole pedometer is shown in Fig. 3.

The system consists of four circuit blocks. An all-pMOS
full-wave rectifier supplies a voltage of approximately
2 V to all circuit blocks. The output current is approxi-
mately 10 . The pulse-shaping circuit, which consists of
a pseudo-CMOS Schmitt trigger inverter, shapes the pulses
obtained by the PVDF roll into clean square waves and feeds
them to both the all-pMOS negative voltage generator and a
14 bit pseudo-CMOS step counter with gate-boosted pMOS
switches. The pseudo-CMOS 14 bit step counter records the
number of steps up to 16383 steps using the harvested power.
To increase the noise margin of the pseudo-CMOS logic

Fig. 3. Block diagram of the insole pedometer.

Fig. 4. Device structure of the 2 V organic pMOS transistor.

Fig. 5. Schematic of the all-PMOS full-wave rectifier.

circuits, the all-pMOS negative voltage generator provides a
voltage (e.g., ) to the pseudo-CMOS inverters and
transmission gates in the flip-flops in the step counter. The
circuit design of each building block is discussed in Section III.
In this work, we use an organic pMOS process with SAM

technology and the semiconductor material DNTT as shown in
Fig. 4. SAM technology enables a total gate oxide thickness of
6 nm and 2 V operation. DNTT is a stable material with a high
mobility of 1.0 . The minimum gate length is 20 in
the negative voltage generator and 50 in other circuit blocks.

III. CIRCUIT DESIGN

A. All-pMOS Full-Wave Rectifier

Fig. 5 shows a schematic of the all-pMOS full-wave rectifier,
which was presented in our previous work [5]. In the left branch,
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Fig. 6. Schematic of the proposed all-PMOS negative voltage generator.

diode-connected pMOS transistors (M1, M2) are used. On the
other hand, the right branch consists of a pair of cross-coupled
pMOS transistors (M3, M4) to increase the output current [5].
The maximum target output voltage is 2 V with a maximum
output current of 10 , while the rectifier in [5] supplies a 20 V,
2 mA output. Their gate width and length are 7200 and
50 , respectively. Although the minimum gate length of 20

is better for obtaining high driving capability, a gate length
of 50 instead of 20 is chosen here in consideration of
the process yield.

B. All-pMOS Negative Voltage Generator

An organic Dickson-type DC to DC converter was presented
in [6]. The converter in [6] handles an output current of 10 nA,
while our negative voltage generator provides 10 . Further-
more, our voltage generator must operate at a low frequency
(e.g., from 1 to 10 Hz). We, therefore employ 470 nF MIM ca-
pacitors for the charge pump circuit. To switch these large ca-
pacitors with a high on/off ratio, a high-gain pseudo-CMOS in-
verter and two diode-connected depletion pMOS transistors are
used as shown in Fig. 6.
To charge/discharge the left capacitor (C1), the output buffer

of the pseudo-CMOS inverter consists of transistors with widths
of 2 mm ( ) and 6 mm ( ). The perfor-
mance of the negative voltage generator strongly depends on
the threshold voltage of the pMOS diode-connected transistors.
To reduce the reverse leakage current, the gate width of each
diode-connected transistor is smaller ( ) than that of
the inverter. These parameters are carefully determined through
a SPICE simulation.

C. Pulse-Shaping Circuit (Pseudo-CMOS Schmitt Trigger
Inverter)

To generate clean square waves from the noisy input pulses
obtained by the PVDF energy harvester, a Schmitt trigger in-
verter is required as shown in Fig. 7. Here, a Schmitt trigger in-
verter based on pseudo-CMOS logic is proposed. Fig. 8 shows
a schematic of the proposed Schmitt trigger inverter and its
DC output characteristics obtained by SPICE simulation. Un-
like conventional CMOS Schmitt trigger inverters, which can
use both pMOS and nMOS transistors to generate hysteresis, in
the proposed pseudo-CMOS Schmitt trigger inverter, the first

Fig. 7. Schematic of the pulse-shaping circuit.

stage is used to adjust the lower-bound ( ) of the hys-
teresis, while the second stage is used to adjust the upper-bound
( ).
When the input signal is swept from low to high, the top

pMOS transistor of the second stage (M1), which is controlled
by the third-stage pseudo-CMOS inverter output (A), pulls up
the voltage of node (B), and therefore moves the high-to-low
switching point to the right, as can be seen in Fig. 8(c). The
upper-bound transition point is determined by the ratio of M1
to M2. On the other hand, when the input is swept from high
to low, the ground-connected pMOS transistor (M3) of the first
stage weakens the pull-up force of the top two pMOS transis-
tors (M4, M5), which forces the low-to-high switching point to
move to the left and widens the hysteresis, as shown in Fig. 8(c).
The lower-bound transition point is determined by the ratio of
M3 to M6.

D. 14 bit Pseudo-CMOS Step Counter

To count the number of steps taken while walking, we de-
signed a pseudo-CMOS binary counter. The counter employs
gate-boosted pMOS switches (M1-M4), while our previous
counter in [5] employs CMOS transmission gates. Fig. 9(a)
shows a schematic of a single-stage 2 V pseudo-CMOS binary
counter with asynchronous reset. By connecting fourteen such
stages, we can build a 14 bit binary counter for the proposed
pedometer. On the basis of a divide-by-two frequency divider,
a new gate-boosting technique is applied in this counter to
compensate for the poor conductivity of the pMOS switches for
the signal around the level. By employing a level-shifted
clock buffer, as shown in Fig. 9(b), we can effectively overdrive
pMOS switches by applying negative voltages though the
terminal in the clock buffer.



258 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48, NO. 1, JANUARY 2013

Fig. 8. All-pMOS negative voltage generator. (a) Overall schematic. (b) Schematic of pseudo-CMOS inverter. (c) DC characteristics of the Schmitt trigger inverter
obtained by SPICE simulation.

IV. MEASUREMENT RESULTS AND DISCUSSION

A. All-pMOS Full-Wave Rectifier

The proposed all-pMOS full-wave rectifier is fabricated by
a 2 V organic pMOS process. Fig. 10(a) shows a chip pho-
tograph of the proposed full-wave rectifier. The chip area is
13.8 24.9 . Fig. 11 shows the measured waveform of the
2 V full-wave rectifier without a smoothing capacitor (C1 in
Fig. 5); the output current is less than 1 . The input signal

( ) is a 4 V peak-to-peak sinusoidal wave. To clearly show
the rectified waveform, we choose 1 Hz as the input frequency.
Full-wave rectified waveforms ( ) are clearly observed.
The output frequency is 2 Hz, and the amplitude of the rectifier
is approximately 2 V peak-to-peak when 1 Hz, 4 V peak-to-peak
sinusoidal input signals are applied. Fig. 12 shows the measured
output voltage versus the output current of the rectifier with
a 1 smoothing capacitor. The proposed all-pMOS rectifier
provides up to 12 power with 59% power efficiency. Fig. 13
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Fig. 9. Schematics of a single-stage 2 V pseudo-CMOS binary counter with
asynchronous reset. (a) Binary counter. (b) Level-shifted clock buffer.

Fig. 10. Chip photographs. (a) Full-wave rectifier. (b) Negative voltage gen-
erator. (c) Pseudo-CMOS Schmitt trigger inverter. (d) 2 bit pseudo-CMOS step
counter.

Fig. 11. Measured waveform of the 2 V full-wave rectifier without a smoothing
capacitor.

shows the measured waveforms of the 20 28 sheet of the
PVDF energy harvester and the rectified output. Here, the har-
vester is pressed by hands and the frequency is approximately
4 Hz, which is intended to be a typical operation speed of the pe-
dometer. The 1 smoothing capacitor can be charged by pro-
viding a mechanical force to the PVDF energy harvester. The
output voltage is approximately 1.3 V with a current of 8 .

Fig. 12. Measured output voltage versus the output current of the rectifier with
a 1 smoothing capacitor.

Fig. 13. Measured waveforms of 20 28 sheet of the PVDF energy har-
vester and the rectified output.

Fig. 14. Optimization of the output voltage of the PVDF sheet. (a) In-phase
operation of parallel PVDF harvesters. (b) Ant phase operation. (c) Implemen-
tation with distributed rectifiers. (a) In-phase. (b) Anti-phase. (c) Implementa-
tion with distributed rectifiers.

The maximum conversion efficiency of the rectifier is 59%,
which is an acceptable performance for the insole pedometer.
However, if the conversion efficiency of the energy harvester
can be improved, its range of applications will be wider. In this
implementation, twenty-one PBDF rolls are set in parallel, and
only one large rectifier is used for simplicity. When each PVDF
sheet is pressed at the same time, the output voltage is max-
imized as shown in Fig. 14(a). In contrast, in the case of an
anti phase, the PVDF outputs mutually conflict and the voltage
is canceled out as shown in Fig. 14(b). To avoid such conflict,
the rectifiers should be distributed in a certain area as shown in
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Fig. 15. Measured waveforms of the negative voltage generator.

Fig. 16. Measured output voltage versus the output current of the negative
voltage generator.

Fig. 14(c). In addition, low-cost, large-area organic electronics
are suitable for implementing distributed rectifiers.

B. All-pMOS Negative Voltage Generator

Fig. 10(b) shows a chip photograph of the negative voltage
generator. The chip area is 21.9 16.0 . Two 470 nF MIM
capacitors (C1 and C2 in Fig. 6) occupy most of the chip area.
The measured waveforms and output voltage versus the output
current are shown in Figs. 15 and 16, respectively. An input
frequency of 10 Hz is chosen to show the maximum output
power and the power efficiency at the highest operation speed
of the pedometer. The output voltage ( ) of the negative
voltage generator is in the case of 10 Hz square pulses.
Thanks to the pseudo-CMOS-inverter-based switches, the pro-
posed negative voltage generator provides a maximum power
of 12 with 65% power efficiency.

C. Pulse Shaping (Pseudo-CMOS Schmitt Trigger Inverter)

Fig. 10(c) shows chip a photograph of the pseudo-CMOS
Schmitt trigger inverter. The chip area is 6.4 16.7 . On
the basis of the measured DC characteristic in Fig. 17, we find
that the switching points for the high-to-low and low-to-high
transients have a difference of approximately 0.25 V ( in
Fig. 17); this characteristic plays a key role in supplying clean
clock signals to the counter. Fig. 18 shows the measured wave-
form of the pseudo-CMOS Schmitt trigger inverter. The PVDF
output is emulated with a 2 V peak-to-peak triangular wave. The
frequency is 1 Hz to clearly show the hysteresis characteristics.
The measured hysteresis characteristic is clearly observed with
the 1 Hz triangular wave input.

Fig. 17. Measured DC characteristic of the pseudo-CMOS Schmitt trigger
inverter.

Fig. 18. Measured waveforms of the pseudo-CMOS Schmitt trigger inverter.

Fig. 19. Schematic of the pseudo-CMOS Schmitt trigger inverter with floating
gates.

For the lower-bound transition point in Fig. 17, the measure-
ment result closely agrees with the simulation result (dashed
line). On the other hand, the measured upper-bound transition
point is lower than the simulated result by approximately
0.15 V. This difference originates from the variation of
in M1 and M2 in Fig. 8. When the variation is critical, a
compensation scheme based on the floating-gate programming
[7] is also effective for the Schmitt trigger inverter. In such a
case, M1 to M4 should be implemented with a floating-gate
layer as shown in Fig. 19. SPICE simulation results for the
compensation are shown in Fig. 20. When the of M1 is
increased by floating-gate programming, the upper-bound tran-
sition point ( ) is shifted to the left as shown in Fig. 20(a).
On the other hand, the lower-bound transition point is stable.
When the of M2 is increased, is moved to the right
as shown in Fig. 20(b). In M3 and M4, both the upper-bound
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Fig. 20. Simulation results of programming. (a) M1. (b) M2. (c) M3. (d) M4.

Fig. 21. Simulation results of the enhancement of hysteresis by programming
M2 and M4.

( ) and lower-bound ( ) transitions are modified as
shown in Fig. 20(c) and (d), respectively. This floating-gate
programming can be used for not only compensation but also
the improvement of hysteresis. For instance, by programming
both M2 and M4, a wider hysteresis is realized as shown in
Fig. 21.

Fig. 22. Measured waveforms of the step counter. (a) Without gate boosting.
(b) With gate boosting.

D. 14 bit Pseudo-CMOS Step Counter

Fig. 10(d) shows a chip photograph of the pseudo-CMOS step
counter. Note that only two stages are shown in the photograph
and the chip area is 25.5 46.8 .
Fig. 22 shows measured waveforms of the single-stage step

counter. The frequency of the input (IN) is 1 Hz to clearly show
the signal integrity. The waveform in Fig. 22(a) is for operation
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Fig. 23. Measured waveforms of 2 bit step counter.

TABLE I
KEY FEATURES AND PERFORMANCE SUMMARY.

without the gate-boosting technique. Owing to the poor driving
capability of the pMOS switches without gate boosting, large
dips are observed. Using the gate-boosting technique, the signal
integrity of Q1 in Fig. 22(b) is greatly improved and robust op-
eration is achieved. Note that Fig. 22 only shows the signals
from output Q1, while QB1 in Fig. 9(a) is used for connecting
to the next stage of the binary counter. Fig. 23 shows the mea-
sured waveform of the 2 bit step counter. The frequency of the
input pulses is 4.4 Hz, which is the maximum measured opera-
tion speed of the counter. Although each output swing is slightly
degraded, the pseudo-CMOS step counter successfully operates
at 4.4 Hz, that is, the counter can handle up to four steps per
second.
Table I gives the key features and a performance summary of

the proposed insole pedometer. The pedometer consists of 462
transistors and its total area is 22 7 .

V. CONCLUSIONS

A shoe insole pedometer, which consists of a piezoelectric
energy harvester and a 2 V organic pedometer circuit, has been
developed as a first step toward the application of flexible
large-area energy harvesting. Its feasibility is demonstrated by
measurement. A pseudo-CMOS 14 bit step counter records the
number of steps up to 16383 steps using the harvested power.
A negative voltage generator based on an organic charge
pump circuit provides 12 power with 65% efficiency. A
pseudo-CMOS Schmitt trigger inverter with a 0.25 V hysteresis
is also proposed. The integration of organic circuits and flexible
energy harvesters will broaden the rnge of applications of
flexible, large-area electronics.
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