JJ1-5

0.5V Image Processor with 563 GOPS/W SIMD and 32bit CPU Using High Voltage **Clock Distribution (HVCD) and Adaptive Frequency Scaling (AFS) with 40nm CMOS**

M. Nomura¹, A. Muramatsu¹, H. Takeno¹, S. Hattori¹, D. Ogawa¹, M. Nasu¹, K. Hirairi¹, S. Kumashiro¹, S. Moriwaki¹, Y. Yamamoto¹, S. Miyano¹, Y. Hiraku¹, I. Hayashi¹, K. Yoshioka², A. Shikata², H. Ishikuro², M. Ahn³, Y. Okuma¹, X. Zhang³, Y. Ryu¹, K. Ishida³, M. Takamiya³, T. Kuroda², H. Shinohara¹, and T. Sakurai³

¹Semiconductor Technology Academic Research Center (STARC), Yokohama, Japan,

²Keio University, Yokohama, Japan, ³University of Tokyo, Tokyo, Japan

Abstract

A 0.5V, 10MHz, 9mW image processor with 320 processing element (PE) SIMD and a 32bit CPU has been developed using 40-nm CMOS. High voltage clock distribution (HVCD) reduces the number of excessive hold buffers required in a 0.5-V logic circuit design, thereby reducing the area, delay, and energy of the SIMD by 14 %, 13%, and 6%, respectively. The 0.5-V SIMD with HVCD achieves an energy efficiency of 563 GOPS/W (= 4.26mW at 7.5MHz), the highest yet reported for near-threshold SIMD. In addition, adaptive frequency scaling (AFS), used to mitigate the impact of the ripple of a buck converters, increases average clock frequency by 33%.

Introduction

We have developed an energy efficient programmable 0.5-V image processor for front-end signal processing of imagers. In order to increase energy efficiency, heterogeneous multi-cores with SIMD, 320 parallel processing in SIMD, and near-threshold operations are used. In the design of near-threshold logic circuits, large delay variations due to PVT variations are a critical problem. We propose two techniques for dealing with this: high voltage clock distribution (HVCD) at design stage and adaptive frequency scaling (AFS) for a post-fabrication tuning.

Image Processor with SIMD and CPU

Fig. 1 shows a block diagram of a developed image processor that includes a 32bit CPU, a 320 PE SIMD, buck converters, an all digital PLL (ADPLL) [1], and an A/D converter (ADC) [2]. The clock frequency (f_{CLK}) is 10MHz. The image processor has four power supply voltages (V_{DD}), including \dot{V}_{DD} for logic circuits other than those for clock distributions (V_{LOGIC}), V_{DD} for clock distributions in the logic circuits (V_{CLK}), V_{DD} for a 1-port SRAM [3] (V_{SRAM1}), and V_{DD} for a 2-port SRAM (V_{SRAM2}). The four \tilde{V}_{DD} 's are supplied by on-chip buck converters.

High Voltage Clock Distribution (HVCD)

Fig. 2 (a) shows a hold timing design in a logic circuit. In order to achieve correct hold timing with regard to early and late on-chip variation (OCV) conditions, hold buffers, buffers added to prevent hold time violations, are required. Fig. 2 (b) shows simulated V_{LOGIC} dependence of the normalized minimum number (N) of stages of the logic gates that include hold buffers. V_{CLK} is varied. N increases with decreasing V_{LOGIC} because OCV increases and within-die gate delay variations increase. N also increases with decreasing V_{CLK} because OCV increases and clock skew increases. For example, at $V_{\text{LOGIC}} = 0.5 \text{V}$, N at $V_{\text{CLK}} = V_{\text{LOGIC}} - 0.1 \text{V}$ is seven times as large as N at $V_{CLK} = V_{LOGIC}$. Increasing N increases area and power overhead, and the setup timing design will also be affected by an increased N. In contrast, N at $V_{CLK} = V_{LOGIC} + 0.1V$ is one-fifth of N at $V_{CLK} = V_{LOGIC}$. For this reason, we propose HVCD in which V_{CLK} and V_{LOGIC} are separated and $V_{CLK} > V_{LOGIC}$, in order to reduce excessive N due to large within-die process variations at 0.5V. Fig. 3 shows a layout for 320 PE SIMD with HVCD. In each 16 PE, the V_{CLK} domain and V_{LOGIC} domains are separated, and all clock buffers are placed and routed in the V_{CLK} domain. Figs. 4 (a) and (b) show simulated area, delay, power, and energy for HVCD with respect to conventional $V_{CLK} = V_{LOGIC}$ for CPU and the SIMD, respectively,. In CPU, area, delay, and energy are reduced by 11%, 13%, and 6%, respectively, at the cost of an 8% increase in power. Similarly, in the SIMD, area, delay, and energy are reduced by 14%, 13%, and 6%, respectively.

Adaptive Frequency Scaling (AFS)

In conventional AFS [4] for a high performance 2.5 GHz processor, f_{CLK} is varied with ns-resolution, using voltage detectors and digital frequency dividers. The area and the power overheads of the conventional AFS are not acceptable in the mW-class processor in the this work. Therefore, we propose AFS with a small area and power overheads (see Fig. 5). Adaptive voltage scaling (AVS) [5] is also implemented. AFS is performed by a µs-order and ns-order feedback loops, while AVS is performed by a ms-order feedback loop. Ring oscillators (ROSC's) monitor VLOGIC and also function as integrators for V_{LOGIC} , which solves the area and power overhead problem in [4]. ROSC frequency is compared with a reference frequency (f_{REF}), and an up/down signal is given to the AVS controller every several 10ms to adapt to die-to-die process variations and temperature variations. An up/down signal is also given to the AFS controller every about 10µs to adapt to several 100 μs -order V_{LOGIC} noise, and f_{CLK} is changed by changing a multiplication number in the ADPLL. Critical path replicas also monitor V_{LOGIC} every 100ns (cycle-by-cycle at 10MHz) by checking the setup margin. When a setup warning is found, the critical-path-replica interrupts the up/down signal to avoid a setup error.

Experimental Results

The proposed image processor has been fabricated in a 40-nm CMOS process. Fig. 6 shows a die photo. Table I shows a performance summary. Fig. 7 shows measured shmoo results for two CPUs, (CPU0 and CPU1), which were designed and fabricated to show the advantage of HVCD. CPU0 is designed with HVCD ($V_{CLK} = V_{LOGIC} + 0.1V$), while CPU1 is designed with a conventional single V_{DD} ($V_{LOGIC} =$ V_{CLK}). In Fig. 7, the target 10MHz operation is achieved at 0.5V only with CPU0, which is faster than CPU1 at a fixed V_{LOGIC}. Fig. 8 shows a measured shmoo for SIMD with HVCD. The target 10MHz operation is achieved at 0.5V. Fig. 9 shows measured V_{LOGIC} dependence of maximum f_{CLK} total power, and leakage power for SIMD. Fig. 10 shows measured V_{LOGIC} dependence of energy efficiency for SIMD. The maximum 563GOPS/W is obtained at $V_{LOGIC} = 0.45V$, 4.26mW, and 7.5MHz. Table II shows a comparison with a previously reported SIMD [6]. Our design achieves the highest energy efficiency in the reported near-threshold SIMD. Fig. 11 shows measured waveforms of V_{LOGIC} and f_{CLK} with AFS. A 4kHz sinusoidal wave is applied to V_{LOGIC} to emulate the ripple of buck converters. The proposed AFS makes it possible to track f_{CLK} to V_{LOGIC} , thereby increasing average clock frequency by 33%.

Acknowledgment

This work was carried out as a part of the Extremely Low Power (ELP) project supported by METI and NEDO.

References

- Y. Hiraku, et al., A-SSCC, pp. 33-36, 2012.
 A. Shikata, et al., Symp. VLSI Circuits, pp. 262-263, 2011.
- [2] S. Moriwaki, et al., Symp. VLSI Circuits, pp. 60-61, 2012.
 [4] T. Fischer, et al., JSSC, pp. 218-228, Jan. 2006.
 [5] Y. Ikenaga, et al., JSSC, pp. 832-840, Apr. 2012.
 [6] R. Pawlowski, et al., ISSCC, pp. 492-493, 2012.

2013 Symposium on VLSI Circuits Digest of Technical Papers C37