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Abstract— Energy autonomy enabled by the energy efficient 
design and the energy harvesting is the one of the top 
requirements for maintenance-free IoT sensor nodes and 
wearable/implanted devices. In this paper, energy efficient ultra-
low voltage (< 0.5V) circuits are shown. Energy autonomous 
wearable healthcare devices using the flexible, large-area, and 
distributed organic electronics are also shown. 

I.  INTRODUCTION 
Requirements for IoT sensor nodes, wearable healthcare 

devices, and implanted medical devices are the wearing-
unconsciousness and the maintenance-free operation as shown 
in Fig.1. To enable the wearing-unconsciousness, mechanically 
flexible or small-size devices with the wireless connection are 
required. To enable the maintenance-free operation, energy 
autonomous devices are required. The energy autonomy is 
achieved by both the energy efficient operation and the energy 
harvesting. In this paper, energy autonomous systems with the 
energy efficient design and the energy harvesting are shown. 

II. ENERGY EFFICIENT DESIGN 
The energy efficient operation is achieved by a near-

threshold operation and a temporal-spatial fine-grained control. 
Fig. 2 shows the simulated power supply voltage (VDD) 
dependence of power, delay, and energy. Compared with the 
nominal operation at VDD = 1.2V, the energy of the near-
threshold operation at VDD = 0.3V is reduced to one-tenth of 
that at VDD = 1.2V. Fig. 3 shows the temporal-spatial fine-
grained control [1]. In the conventional design, the clock 
frequency (fCLK), VDD, and the threshold voltage (VTH) of 
transistors are common within a chip. In contrast, in the state-

of-the-art design, many different fCLK’s, VDD’s, and VTH’s are 
used within a chip and they are dynamically changed to 
minimize the energy. Such temporal-spatial fine-grained 
control includes the dynamic voltage scaling [2], the dynamic 
frequency scaling [3], the power gating, the clock gating, the 
body biasing, the local gate overdrive [4], and the quick wake-
up circuits [5]. 

Fig. 4 shows a block diagram of extremely low power 0.5V 
SoC for IoT sensor nodes. The voltage obtained from the 
energy harvester is regulated by the power management 
circuits [6-7] and many different VDD’s are given to A/D 
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Fig. 1. Requirements for wearable/implanted devices. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Power supply voltage (VDD) (V)En
er

gy
 (=

Po
w

er
 x

 D
el

ay
) (

a.
u.

)

Po
w

er
 (a

.u
.)

D
el

ay
 (a

.u
.)

Nominal
VDD (1.2V)

100

101

102

103

104

10-5

10-4

10-3

10-2

10-1

100

1
10x

 
Fig. 2. Power supply voltage dependence of power, delay, and energy. 
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Fig. 3. Temporal-spatial fine-grained control. 
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converter, logic circuits, SRAM, and RF circuits for the 
temporal-spatial fine-grained control to minimize the energy. 
Fig. 5 shows an example of 0.5V SoC [3]. The 0.5V image 
processor with 563 GOPS/W SIMD and 32bit CPU includes an 
all digital PLL (ADPLL), an A/D converter, and buck 
converters. 

III. ENERGY AUTONOMOUS WEARABLE FLEXIBLE DEVICES 
The organic electronics enables flexible, large-area, and 

distributed sensor and/or actuator array and is suitable for the 
wearing-unconscious devices. Several energy autonomous 
wearable healthcare devices using the organic electronics have 
been proposed [8-9].  

Fig. 6 shows a photograph of a fever alarm armband (FAA) 
[10] integrating fully flexible solar cells, a piezoelectric 
speaker, a temperature detector, and 12V organic 
complementary FET circuits. FAA is a flexible energy 
autonomous healthcare device with the wireless interface. FAA 
is looped around an upper arm of a patient in a hospital room, 
and the temperature detector monitors the underarm 
temperature of the patient. 220-�m thickness amorphous 
silicon solar cells attached outside of the upper arm generate 
the power. When high fever is detected, a 52-�m thickness 
piezoelectric speaker with polyvinylidene difluoride (PVDF) 
makes a sound to alarm a nurse. Organic circuits and the 
temperature detector are fabricated on a 50-�m thickness 
flexible polyimide film, and the solar cells and the speaker are 
attached on it. Fig. 7 shows a block diagram of FAA. An active 

voltage limiter regulates VDD. When the measured temperature 
is higher than the preset threshold temperature, a ring oscillator 
starts oscillation and the speaker makes a sound. 
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Fig. 4. Block diagram of extremely low power 0.5V SoC for IoT sensor nodes. 
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Fig. 6. Fever alarm armband [10]. 
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