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Abstract—A general-purpose clocked gate driver integrated
circuit (IC) to generate an arbitrary gate waveform is pro-
posed to provide a universal platform for fine-grained gate wave-
form optimization handling various power transistors. The fabri-
cated IC with a 0.18 µm Bipolar-CMOS-DMOS process has 63
P-type MOS (PMOS) and 63 N-type MOS (NMOS) driver tran-
sistors on a chip whose activation patterns are controlled by 6-bit
digital signals and 40 ns time step control. In the 500 V switch-
ing measurements with a manual gate waveform optimization, the
proposed gate driver reduces the IC overshoot by 25% and 41%,
and the energy loss by 38% and 55% for Si-insulated-gate bipolar
transistor and SiC-MOSFET, respectively, which demonstrate the
feasibility of driving various power devices with the same driver.
An automatic optimization by simulated annealing algorithm is
introduced to fully utilize the benefit of the gate driver, and the
further reduction of IC overshoot by 26% and the energy loss by
18% are achieved over the manual optimization.

Index Terms—Gate driver, insulated-gate bipolar transistor
(IGBT), SiC, simulated annealing (SA).

I. INTRODUCTION

AGATE driver is a key technology for the switching of
devices to minimize the switching loss and the current

overshoot. The conventional gate drivers, however, have two
problems: 1) customized design to each power transistor (e.g.,
Si-insulated-gate bipolar transistor (IGBT), SiC-MOSFET) in-
creases the development cost and turnaround time (TAT); and
2) limited programmability [2]–[10] prevents a precise gate
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Fig. 1. Schematic diagram of general-purpose CGD IC.

waveform optimization for the low noise and the low loss of
the power transistors. To solve these issues, a general-purpose
clocked gate driver (CGD) integrated circuit (IC) is proposed
to provide a universal platform for fine-grained gate waveform
optimization handling various power transistors including Si-
IGBT and SiC-MOSFET, thereby reducing the development
cost and TAT for the gate drivers. The programmability of the
proposed gate driver is the finest compared with the previous
gate drivers [1]–[10] and it is shown that the finer programma-
bility realizes the better performance. However, in order to fully
enjoy the benefit of the fine granularity of the proposed gate
driver, a manual optimization may not be sufficient as the degree
of freedom is much increased. Thus, in this paper, an automatic
optimization based on simulated annealing (SA) is introduced
and shows the possibility of the further increase in performance.

II. SYSTEM IMPLEMENTATION

The schematic diagram of the implemented general-purpose
CGD IC is shown in Fig. 1 [15]. CGD IC is developed
for the switching of power devices at VDC = 500 V. In or-
der to realize programmable 63-level drivability, 63 parallel
drivers are connected to the gate of the power device and
a 6-bit binary control signal, BPMOS (BNMOS ), is applied
to specify the number of activated P-type-MOS (PMOS) [N-
type MOS (NMOS)] driver transistors, NPMOS (NNMOS ). A
pair of 6-bit signals (BPMOS and BNMOS ) are latched by
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Fig. 2. Binary to thermometer-code decoder.

the clock (CK) and activate the final 63 PMOS (NMOS)
transistors. CK frequency is 25 MHz and 40 ns time step con-
trol of the drivability is achieved. The power supply voltage
(VDRIVE ) of CGD IC is 10–18 V, and VDRIVE of 15 V is used in
the following measurements. The voltage swing of input digital
signals (BPMOS , BNMOS , and CK) is 5 V, and the swing is in-
creased to VDRIVE by level-shifters. By adjusting the predriver
voltage swing, VPD PMOS and VPD NMOS , from 1.2 to 5 V, the
output drivability of a single-driver metal-oxide-semiconductor
(MOS) transistor can be tuned from 3 to 80 mA. The peak driv-
ability is 63 times of the single driver, which corresponds to the
maximum peak current of the gate current (IG ) from 0.19 A (=
3 mA × 63) to 5 A (= 80 mA × 63). VPD PMOS and
VPD NMOS of 1.8 V are used in the following measurements.

The binary-coded input is indispensable since 63 × 2 input
pins are too many to handle. The binary signals, however, may
cause glitch problems in the gate voltage (VG ). The glitch will
break down the power transistors. For example, when the binary
input changes from 011111 (31) to 100000 (32), there is a pos-
sibility that the state goes from 011111 (31) to 111111 (63) to
100000 (32) causing a few nanoseconds glitch at the predriver,
if there are variability of devices and interconnection designs
which make the most significant bit change faster than the other
bits. This is the cause of the glitch problems. To prevent this
problem, a small-sized binary to thermometer-code decoder in
Fig. 2 is employed.

Fig. 3 shows operation waveforms for 63 PMOS transistors to
pull up VG in CGD IC. The operation for 63 NMOS transistors to
pull down VG is similar. An arbitrary IG waveform is generated
by applying a control bit pattern (BPMOS (BNMOS )) in each
clock cycle with 40-ns step and digitally specifying time and
current pairs of ti and IGi (i = 1, 2, 3, . . . , n).

Here, the modeling of the 63-parallel drivers in Fig. 1 is dis-
cussed. In the previous segmented gate drivers [10], the transis-
tors in the segmented gate drivers [see Fig. 4(a)] were modeled
as a resistor [see Fig. 4(b)]. The transistors in the segmented
gate drivers, however, are to be modeled as a current source [see

Fig. 3. Operation waveforms for 63 PMOS transistors to pull up VG in
CGD IC.

Fig. 4. Modeling of gate drivers. (a) Original gate driver. (b) Conventional
resistor model. (c) Proposed current-source model.

Fig. 5. SPICE simulated pull-up and pull-down waveforms of VG with two
models in Fig. 4. VPD_PMOS and VPD_NMOS are 5 and 1.8 V in (a) and (b),
respectively.

Fig. 4(c)] instead of a resistor [see Fig. 4(b)]. Fig. 5 shows the
simulation program with integrated circuit emphasis (SPICE)
simulated pull-up and pull-down waveforms of VG with two
models in Fig. 4. The capacitance in Fig. 4 is 22 nF emulat-
ing the gate capacitance of the power devices. VPD PMOS and
VPD NMOS are 5 and 1.8 V in Fig. 5(a) and (b), respectively. It
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Fig. 6. Die photograph of gate driver IC.

Fig. 7. Photographs of PCB.

is seen that the gate driver behaves more like a constant-current
driver [see Fig. 4(c)] rather than a resistor [see Fig. 4(b)] because
of the high output resistance of MOS transistors in a saturation
region. Still, the behavior of a MOS driver is fundamentally sim-
ilar to a resistor, which has been used for a long time in driving
the power devices. A minor difference is that when considering
the switching between two different driver strength states, the
driver current is the more predictable for MOS drivers whose
driving current is independent from the voltage of the switching,
while the driving current is dependent on the switching voltage
and thus timing for a driver based on resistors

The proposed general-purpose CGD IC is fabricated with
40 V, 0.18 µm Bipolar-CMOS-DMOS process. Fig. 6 shows
a die photograph of CGD IC. The core size is 2300 µm by
730 µm. The total chip size is 2.5 mm2, which is determined
by the foundry, although the core size is much smaller than the
total chip size. Fig. 7 shows photographs of printed circuit board
(PCB). The 2.5 mm2 CGD IC is placed on the top side of PCB.
Si-IGBT and SiC diodes are placed on the reverse side of PCB.

III. MEASUREMENT RESULTS

Turn-on and turn-off characteristics are measured with
a double-pulse setup shown in Fig. 1 with SiC diodes

Fig. 8. Three types of gate waveforms. (a) No active gate drive. (b) Nine-level
active gate drive. (c) Proposed 63-level active gate drive.

(C4D10120D, 1200 V, 18 A) at VDC = 500 V. To demonstrate
the versatility of the proposed general-purpose CGD IC, both
Si-IGBT (IRG7PH46UPbF, 1200 V, 75 A) and SiC-MOSFET
(SCH2080KE, 1200 V, 40 A) are driven by CGD IC. Although
in Fig. 1, an IGBT symbol is used for a power device, the IGBT
is replaced by SiC-MOSFET when SiC-MOSFET is under test.
Notations such as IC and VC are used even for the SiC-MOSFET
device just for simplicity. Turn-off characteristics are described
only for Si-IGBT in Section III-B as the results basically do not
change much for the SiC-MOSFET.

A. Turn-on Case

To show the advantage of the proposed CGD IC with pro-
grammable 63-level drivability, three types of gate waveforms
shown in Fig. 8 are compared. Fig. 8(a) shows a conventional
“no active gate drive” [11]. To show the tradeoff between the
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TABLE I
PARAMETERS USED IN MEASUREMENTS FOR SI-IGBT AND SIC-MOSFET

Si-IGBT turn on SiC-MOSFET turn on Si-IGBT turn off

m 31 63 32
t1 160 ns 40 ns 400 ns
t2 160 ns 80 ns 400 ns

Fig. 9. Measured energy loss versus IC overshoot in turn-on characteristics at
500 V switching for Si-IGBT. The load current IL is set to be 15.4 A.

Fig. 10. Measured energy loss versus IC overshoot in turn-on characteristics
at 500 V switching for SiC-MOSFET. The load current IL is set to be 15.4 A.

turn-on energy loss and IC overshoot, IG to pull-up VG is varied
by NPMOS in the measurement. Fig. 8(b) shows a conventional
“9-level active gate drive” emulating the 9-level segmented gate
drivers [10]. This waveform is based on [5], [7], [9], and [12].
At the turn on, NPMOS changes from 0 to m and keeps m for
t1 . Then, NPMOS changes from m to 9 level of i (i = 2–58 with
seven increments in between) and keeps i for t2 . Finally, NPMOS
changes from i to m. Fig. 8(c) shows the proposed “63-level ac-
tive gate drive.” Fig. 8(c) is the same as Fig. 8(b) except for i.
In Fig. 8(c), i is from 0 to 63 with one increment in between.
Table I shows m, t1 , and t2 in the measurements for Si-IGBT
and SiC-MOSFET, respectively.

Figs. 9 and 10 show measured energy loss versus IC overshoot
in turn-on characteristics at 500-V switching with the three gate
waveforms shown in Fig. 8 for Si-IGBT and SiC-MOSFET,
respectively. In the no active gate drive, the tradeoff between

Fig. 11. Measured waveforms for Si-IGBT corresponding to Fig. 9. (a) No
active gate drive at the same IC overshoot to (c). (b) No active gate drive at the
same energy loss to (c). (c) Proposed 63-level active gate drive.

the turn-on energy loss and IC overshoot is observed. By using
63-level active gate drive, however, the loss-overshoot tradeoff
can be optimized more compared with cases of nine-level active
gate drive [10] and no active gate drive. In Figs. 9 and 10, the
blue open triangle points near the optimum point are observed
by changing just one turn-on transistor count (NPMOS ) for the
time segment t2 . It is seen from these figures that the change in
the loss and overshoot by just one step in 63 levels is visible and
thus providing 63 levels of driving strength if justified.

The proposed 63-level active gate drive reduces the measured
energy loss at the same IC overshoot by 38% (see Fig. 9) and
55% (see Fig. 10) for Si-IGBT and SiC-MOSFET, respectively.
Similarly, the proposed 63-level active gate drive reduces the
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Fig. 12. Measured waveforms for SiC-MOSFET corresponding to Fig. 10.
(a) No active gate drive at the same IC overshoot to (c). (b) No active gate drive
at the same energy loss to (c). (c) Proposed 63-level active gate drive.

Fig. 13. Measured energy loss versus VC overshoot in turn-on characteristics
at 500-V switching for Si-IGBT. The load current IL is set to be 52 A.

Fig. 14. Measured waveforms for Si-IGBT corresponding to Fig. 13. (a) No
active gate drive at the same VC overshoot to (c). (b) No active gate drive at the
same energy loss to (c). (c) Proposed 63-level active gate drive.

measured IC overshoot at the same energy loss by 25% (see
Fig. 9) and 41% (see Fig. 10) for Si-IGBT and SiC-MOSFET, re-
spectively. The corresponding measured waveforms of NPMOS ,
VG , VC , and IC for Si-IGBT and SiC-MOSFET are shown in
Figs. 11 and 12, respectively. The 25% and 41% reduction of
IC overshoot is clearly shown in Figs. 11 and 12, respectively.

In this paper, the search for the best driving waveform is
carried out manually through trial and error by confining the
search space and by reducing the waveform choices. In general,
however, more time segments can be used and the number of
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Fig. 15. Setup for automatic optimization (yellow part is hardware and blue part is software).

turn-on transistors in each time segment can be selected out of 64
choices. Thus, the search complexity becomes huge and may not
be done manually. For this kind of general case, a machine-based
search method can be effective. An example of the machine-
based search using the SA algorithm is reported elsewhere [13].
Even though this paper confined the search space compared with
the more general search space, much improvement is found as
is described above and it can be said that the scheme is effective.

B. Turn-off Case

For the measurements of the turn-off case, the gate drivability
optimization is achieved by changing the turn-on NMOS count,
NNMOS , instead of NPMOS for the turn-on case. One more
difference between the turn-on case and turn-off case measure-
ments is that the voltage overshoot, VC , is taken as the overshoot
instead of the current overshoot, IC , in the turn-on case. Sim-
ilar to the turn-on case in Section III-A, three types of gate
waveforms shown in Fig. 8(a)–(c) are compared.

Fig. 13 shows measured energy loss versus VC overshoot in
turn-on characteristics at 500 V switching with the three gate
waveforms shown in Fig. 8 for Si-IGBT. The proposed 63-
level active gate drive reduces the measured energy loss at the
same VC overshoot by 46%. Similarly, the proposed gate drive
reduces the measured VC overshoot at the same energy loss
by 30%. The corresponding measured waveforms of NPMOS ,
VG , VC , and IC for Si-IGBT are shown in Fig. 14. The 30%
reduction of VC overshoot is clearly seen from the figure.

The optimized gate driving waveform is driving relatively
strongly at first and then, reducing the driving strength just be-
fore the gate voltage reaches the threshold voltage of the IGBT,
and increasing the strength again. This reduces the sharp voltage
overshoot. The qualitative strategy for the optimized waveform
is consistent with the previous publications [9], [14] and the
advantage of the proposed driver is to achieve the quantitative
optimization by digital control.

IV. OPTIMIZATION BY SA

As is described in the previous section, it is possible to im-
prove the performance of the circuit by the manual optimization
of the gate waveforms by confining ourselves to try the wave-
forms as shown in Fig. 8. By exploring the wider search space,
eight time segments in this case, it may be possible to further

improve the performance. Thus, an automatic optimization is
applied by combining real measurements and a software opti-
mization loop as shown in Fig. 15.

Any strength of drivability from 0 to 64 (× 12 mA) can be
chosen for each of eight time segments of 40 ns. Thus, 648 (>
1014) number of waveforms need to be tried for an exhaustive
search, which is impractical. Thus, SA is applied in this paper.
The target is to minimize the object function, fOBJ , defined as
follows:

fOBJ =
√

E ′
loss

2 + I ′C overshoot
2

where the energy loss Eloss and IC overshoot IC overshoot are
normalized as follows:⎧⎨

⎩
E ′

loss = E l o s s−E l o s s , m in
E l o s s , m a x −El o s s , m in

I ′C overshoot = IC ov e r s h o o t−IC ov e r s h o o t , m in
IC ov e r s h o o t , m a x −IC ov e r s h o o t , m in

.

The subscript min (max) signifies the minimum (maximum) of
the corresponding quantity. For example, Eloss,min is set to 0
as an ideal minimum value. On the other hand, Eloss,max is the
measured Eloss when the gate drive waveform is the slowest,
that is, all of n1 , n2 , . . . , n8 are 1. Here, ni signifies the number
of turn-on NMOS of the gate driver in ith time-segment in
Fig. 1. Likewise, the minimum (maximum) overshoot values
are obtained either by the slowest or the fastest gate driving
waveform. The values of IC overshoot,min and IC overshoot,max are
set similar to Eloss,min and Eloss,max . After the normalization,
all of the normalized quantities vary between 0 and 1.

First, a PC randomly generates a new trial waveform, that is,
a new waveform vector (n1 . . . n8) using MATLAB and sends
control signals to the gate driver through LabVIEW, and then
the digital oscilloscope receives the measured voltage and cur-
rent from the board and sends the digital data back to the PC.
Depending on the measured value of fOBJ , the PC generates the
next trial waveform according to the SA algorithm described in
Fig. 15. The optimization iterations continue until no gain in ob-
served. One physical measurement of about 2 s is needed in one
SA iteration loop and less than 2000 measurements are needed
to complete the optimization, and thus it takes about an hour for
the whole process. No destructive breakdown of power devices
was observed in the optimization process. A greedy optimiza-
tion algorithm, that is, the hill descending algorithm is also tried
but it stops at a suboptimal point, which is even worse than no
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Fig. 16. Measured optimization result by the SA algorithm in turn-on char-
acteristics at 500 V switching for Si-IGBT. The load current IL is set to be
15.4 A.

TABLE II
COMPARISON WITH PREVIOUS GATE DRIVERS

active control case. Consequently, it is concluded that a global
optimization algorithm such as SA should be used.

In Fig. 16, the optimization result by the SA algorithm is
shown together with the human manual search results. IC over-
shoot and the energy loss are better than the human manual
search results (see Fig. 9) by 26% and 18%, respectively. Gen-
erally speaking, the optimized waveform is a function of several
parameters such as VDC and IL , and a table lookup approach
will be implemented in the future to cope with the parameter
dependence. The optimization is executed in the development
stage. Some may argue that a dynamic on-the-fly optimization is
more suitable but applying a new trial waveform may be risky in
a product in operation and moreover when the aforementioned
parameters change from cycle to cycle, as is observed in multi-
level converters, it is difficult to optimize on the fly due to the
short time period permitted for optimization.

V. CONCLUSION

Table II shows a comparison of the proposed CGD IC
with previous gate drivers. This work achieved the 40-ns step

timing control and 63-level drivability, thereby enabling the gate
waveform optimization for both Si-IGBT and SiC-MOSFET.
The time programmability is achieved for the first time and
the 63-level drivability is the largest number of the drivability
levels.

The general-purpose gate driver IC to generate an arbitrary
gate waveform is the universal platform for fine-grained gate
waveform optimization handling various power transistors. The
40-ns step timing programmability is achieved for the first time
and the 63-level drivability is the largest number of the drivabil-
ity levels in the previously published gate drivers. In the 500 V
turn-on measurements, the proposed CGD reduces the IC over-
shoot by 25% and 41% and the energy loss by 38% and 55% for
Si-IGBT and SiC-MOSFET, respectively. For a turn-off case,
the measurement for Si-IGBT shows that VC overshoot and the
energy loss are reduced by 30% and 46%, respectively. Not only
for the case of turn on, the improvement is also observed for the
turn-off case of Si-IGBT.

An automatic optimization by the SA algorithm is introduced
to fully utilize the benefit of the gate driver and the further re-
duction of IC overshoot by 26% and the energy loss by 18% are
achieved over the manual optimization for a Si-IGBT case. The
automatic optimization method can open up a way to effectively
optimize the driving waveform of power devices for the better
circuit performance.

The proposed driver and the optimization method can be used
as a platform for the driving waveform optimization of various
power devices by providing fine tunability.
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