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Abstract— The emitter resistance (RE), the junction temperature 

(TJ), the collector current (IC), and the threshold voltage (VTH) 

of power devices are key parameters that determine the 

reliability of power devices. Adding dedicated sensors to 

measure the key parameters, however, will increase the cost of 

the power converters. To solve the problem, power device 

degradation estimation methods by the machine learning of gate 

waveforms are proposed. Two methods are shown in this paper. 

First, in order to detect the bond wire lift-off of power devices, 

the estimation of the number of the connected bond wires using 

the linear regression of two feature points extracted from the 

gate waveforms of a SiC MOSFET is shown using SPICE 

simulations. Then, in order to detect the power device 

degradation, the estimation of RE, TJ, IC, and VTH using the 

convolutional neural network (CNN) with the gate waveforms 

of an IGBT for input is shown using both simulations and 

measurements. 
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I. INTRODUCTION

Highly reliable power devices are required, because the 
power devices are important components of power electronics 
systems that support society. As examples of the power 
devices, an insulated gate bipolar transistor (IGBT) and a SiC 
MOSFET are discussed in this paper. The most frequent cause 
of the long-term degradation of the IGBTs is the bond wire 
lift-off due to the thermal cycles [1,2], where emitter bond 
wires are peeled-off from the pad. Fig. 1 (a) shows five 
important parameters related to the bond wire lift-off in IGBTs, 
the number of the connected bond wires (n), the emitter 
resistance (RE), the junction temperature (TJ), the collector 
current (IC), and the threshold voltage (VTH). In order to 
measure the values of n, RE, TJ, IC, and VTH, however, adding 
dedicated sensors for current, voltage and temperature will 
increase the cost of the power converters. Several previous 
papers tried to reduce the number of sensors. The estimation 
of IC for an IGBT using the collector-emitter voltage (VCE), 
gate-emitter voltage (VGE), TJ, and VTH as input has been 
investigated based on a neural network [3]. It is, however, very 
costly to know these voltages and TJ beforehand using sensors 
and only IC can be estimated. The estimation of TJ by 
measuring the peak voltage of the gate drive voltage has been 
proposed [4]. The estimation, however, is only for TJ and since 
it does not use an AI-based approach, the estimation needs 
very high precision of the peak voltage measurement without 
noise, which is practically very difficult.  

To solve the problems, two power device degradation 
estimation methods by the machine learning of the gate 
voltage (VG) waveforms are proposed in this paper. Fig. 1 (b) 
shows a schematic of the VG waveforms and two feature points 
(VG,BENT and VG,MIN), where the definitions will be shown later. 
In Section II, as shown in Fig. 1 (c), in order to detect the bond 
wire lift-off of power devices, the estimation of n using the 

linear regression of two feature points extracted from VG 
waveforms of a SiC MOSFET is shown using simulations. In 
Section III, as shown in Fig. 1 (d), in order to detect the power 
device degradation, the estimation of RE, TJ, IC, and VTH using 
the convolutional neural network (CNN) with VG waveforms 
of an IGBT for input is shown using both simulations and 
measurements. 

II. DETECTION OF BOND WIRE LIFT-OFF USING LINEAR

REGRESSION OF TWO FEATURE POINTS 

In order to detect the bond wire lift-off of power devices, 
in this chapter, the estimation of n using the linear regression 
of two feature points (VG,BENT and VG,MIN) extracted from VG 
waveforms of a SiC MOSFET is shown. As shown in Fig. 1 
(b), VG,BENT is defined the inflection point of VG around VTH, 
and VG,MIN is defined the first minima of VG. 

(a) 

(b) 

(c) 

(d) 
Fig. 1.  Overview of this paper. (a) Parameters related to bond wire lift-off in 
IGBTs. (b) Schematic of VG waveforms and two feature points (VG,BENT and 
VG,MIN). (c) Estimation of n using linear regression of two feature points. (d) 
Estimation of RE, TJ, IC, and VTH using CNN with VG waveforms. 
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Fig. 2 shows a flowchart of the proposed detection method 
of the bond wire lift-off. During the initial power-on of a 
power converter, in order to collect two feature points with 
different temperatures, VG waveforms are periodically 
measured m1 times, VG,BENT and VG,MIN are extracted, and they 
are written to memory. Then, a regression line is found using 
the data of VG,BENT and VG,MIN, and the regression line is 
written to memory. After that, during the normal operation of 
the power converter, VG waveforms are periodically measured, 
VG,BENT and VG,MIN are extracted, and an anomaly score is 
calculated. The anomaly score is the distance between the two 
feature points and the regression line. When the anomaly score 
is larger than the predetermined value (ASTH), the bond wire 
lift-off is detected. 

Fig. 3 shows a circuit schematic of the double pulse test 
for the SiC MOSFET (C3M0060065D, 650V, 37A) to 
demonstrate the estimation of n using the linear regression of 
VG,BENT and VG,MIN. Table I shows the parameters for the 

SPICE simulation of the circuit. In the circuit simulations, n is 
varied to emulate the bond wire lift-off, and TJ and the load 
current (IL) are varied, because TJ and IL are key parameters to 
determine VG during the operation of the power converters. 

Fig. 4 shows the simulated VG waveforms with varied n at 
TJ = 75 ºC and IL = 5 A. VG,MIN clearly changes with n, while 
VG,BENT does not depend on n, because the RS and LS change 
with n as shown in Table I and VG,BENT is determined by VTH. 

Fig. 2.  Flowchart of proposed detection method of bond wire lift-off. 
. 

Fig. 3.  Circuit schematic of double pulse test for SiC MOSFET. 
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Fig. 4.  Simulated VG waveforms with varied n at TJ = 75 ºC and IL = 5 A. 

Fig. 5.  Simulated VG waveforms with varied TJ at n = 3 and IL = 5 A. 

Name Value

VDD Supply voltage 300 V

LVDD Parasitic inductance between diode and 
capacitor

6 nH

LLOAD Load inductance 1.5 mH

LD Parasitic inductance between diode and drain 3 nH

RG External gate resistance 2.5 Ω

LG Parasitic inductance between gate driver and 
gate

6 nH

n Number of connected bond wires 3, 2, 1

RS Parasitic resistance of bond wires (n = 3, 2, 1) 0.270 mΩ,
0.405 mΩ,

0.810 mΩ

LS Parasitic inductance of bond wires (n = 3, 2, 1) 1.15 nH,
1.72 nH,

3.44 nH

RLEAD Parasitic resistance of lead of source 7.41 mΩ

LLEAD Parasitic inductance of lead of source 3.55 nH

LGR Parasitic inductance between ground of gate 
driver and lead of source

3 nH

LVDDR Parasitic inductance between lead and capacitor 6 nH

VDRIVE Gate driver voltage source 0 V / 15 V
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Fig. 5 shows the simulated VG waveforms with varied TJ at n 
= 3 and IL = 5 A. Both VG,BENT and VG,MIN change with TJ, 
because TJ changes VTH. Fig. 6 shows the simulated VG 
waveforms with varied IL at n = 3 and TJ = 75 ºC. Both VG,BENT 
and VG,MIN do not depend on IL. The above results show that n 
can be estimated by a regression analysis of VG,BENT and VG,MIN, 
because VG,BENT depends on TJ, and VG,MIN depends on both n 
and TJ. 

Fig. 7 shows the simulated relationship between VG,MIN 
and VG,BENT with varied TJ and n at IL = 5 A. When TJ increases, 
both VG,BENT and VG,MIN decrease, because VTH is reduced. 

When n increases, only VG,MIN decreases as shown in Fig. 4. 
The regression line for n = 3 to calculate the anomaly score is 
also shown. When the bond wire lift-off occurs, n changes 
from 3 to 2, the distance between the data and the regression 
line increases, and the anomaly score increases, thereby 
detecting the bond wire lift-off. Fig. 8 shows the simulated 
time series data of the anomaly score at IL = 5 A. In each data 
point, TJ is randomly changed between 25 ºC and 125 ºC. n is 
3 in the first 20 data points, while n is 2 in the last 10 data 
points. When n changes from 3 to 2, the anomaly score 
suddenly increases from sub-0.04 to above-0.2, thereby 
detecting the bond wire lift-off. 

III. ESTIMATION OF RE, TJ, IC, AND VTH USING 

CONVOLUTIONAL NEURAL NETWORK

In order to detect the power device degradation, in this 
chapter, the estimation of RE, TJ, IC, and VTH using CNN with 
VG waveforms of an IGBT for input is shown using both 
simulations and measurements [5]. In [5], the estimation of RE, 
TJ, IC, and VTH using simulations and the estimation of RE and 
IC using measurements are shown. In this paper, the 
measurements are shown. 

Fig. 9 shows the CNN network architecture adopted for a 
measurement. The input is a voltage waveform of the gate 
driver output during the turn-on of IGBT. The input vector 
length is chosen to be 500, which corresponds to 6-ns cycle 
sampling for the entire turn-on process of 3-µs. The output is 
the categorized in 6 classes. 

Fig. 10 shows the measurement setup with an IGBT 
(2MBI100TA-060-50, 600 V, 100 A) and varied RE to emulate 
the bond wire lift-off. RE is varied by changing the number of 
resistors in parallel. The measured waveforms are shown in 
Fig. 11. It is seen from the measured waveforms that it is 

Fig. 9.  CNN network adopted for measurement. 

(a) 

(b) 
Fig. 10.  (a) Measurement setup of IGBT. (b) Varied RE to emulate the bond 
wire lift-off. 
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Fig. 6.  Simulated VG waveforms with varied IL at n = 3 and TJ = 75 ºC. 

Fig. 7.  Simulated relationship between VG,MIN and VG,BENT with varied TJ and 
n at IL = 5 A. 

Fig. 8.  Simulated time series data of anomaly score at IL = 5 A. 
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difficult to estimate RE and IC using human eyes. The machine 
recognition is needed for estimating the parameters. RE and IC 
are categorized into 6 classes this time as shown in Table II. 
The results of estimation using the CNN approach are 
tabulated in Table III. The success rate is very high amounting 
up to 99.5%. The number of epochs in the table shows the 
number of deep learning optimization loops needed for the 
entire learning process. Using i7 Intel processor with the clock 
rate of 2.5-GHz, one epoch needs approximately 1-s, which is 
sufficiently fast to be practical.  

IV. CONCLUTIONS

Two power device degradation estimation methods by the 
machine learning of gate waveforms are proposed and 
demonstrated with simulations and measurements. 
Introducing the machine learning into the power electronics 
will be a key to increase the reliability of the power devices 
and to reduce the cost for various sensors. 
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Fig. 11.  Measured VG waveforms with varied IC. 

Table II  Six classes of RE and IC. 

Table III  Estimation results using CNN. 

IC=2A IC= 10A IC= 20A IC= 30A
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Ratio 1 0.989 1 0.996 0.986 1
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