# Large Current Output Digital Gate Driver Using Half-Bridge Digital-to-Analog Converter IC and Two Power MOSFETs

Kohei Horii<sup>1</sup>, Katsuhiro Hata<sup>1</sup>, Ruizhi Wang<sup>1</sup>, Wataru Saito<sup>2</sup>, and Makoto Takamiya<sup>1</sup> <sup>1</sup> The University of Tokyo, Tokyo, Japan <sup>2</sup> Kyushu University, Fukuoka, Japan

Abstract—An 8-bit digital gate driver (DGD) using a halfbridge digital-to-analog converter (HB DAC) IC and two power MOSFETs is proposed to enable the output voltage swing of  $\pm$  15 V and the large gate current up to 58 A for a 6500 V, 1000 A IGBT module. In the turn-on measurements of IGBT at 3000 V and 1000 A, compared with the conventional single-step gate driving, the proposed active gate driving using DGD reduces the switching loss from 6.9 J to 4.8 J by 30 % at the same current overshoot of 1.3 kA and reduces the current overshoot from 1560 A to 1330 A by 15 % at the same switching loss of 5 J, which clearly shows the advantage of DGD for the 6500 V, 1000 A IGBT module. This paper is the first to demonstrate the advantages of DGD in the high-voltage, large-current IGBT modules.

#### Keywords—gate driver, IGBT, switching loss, high voltage

### I. INTRODUCTION

High-voltage, large-current IGBT modules (e.g. ratings of 6500 V, 1000 A) are used in many social infrastructure fields including high-voltage DC transmission systems and train traction systems [1]. In addition to improving IGBTs themselves, gate driving technologies can be used to reduce the loss of IGBTs. Recently, many papers have been published on the simultaneous reduction of both switching loss  $(E_{LOSS})$  and switching noise by active gate waveform control using digital gate drivers (DGDs) [2-8]. Conventional DGDs, however, are difficult to apply to the 6500 V, 1000 A IGBT modules, because the modules require DGD with (1) the output voltage swing  $(V_{\text{SWING}})$  of  $\pm 15$  V to prevent a false turn-on and (2) the gate current  $(I_G)$  of up to around 20 A because of the large gate capacitance. For example, V<sub>SWING</sub> is 3.3 V [3], 5 V [4-5, 7], 15 V [2], 18 V [6] and 20 V [8], and the maximum  $I_{\rm G}$  is between 5 A [2, 4] and 42 A [5].

To solve the problems, in this paper, an 8-bit DGD using a half-bridge digital-to-analog converter (HB DAC) IC and two power MOSFETs is proposed to enable  $V_{\text{SWING}}$  of  $\pm 15$  V and large  $I_{\text{G}}$  up to 58 A for the 6500 V, 1000 A IGBT modules. 30 % reduction of  $E_{\text{LOSS}}$  and 15 % reduction of the current overshoot ( $I_{\text{OVERSHOOT}}$ ) compared with the conventional single-step gate driving in the turn-on of the 6500 V, 1000 A IGBT module at 3000 V and 1000 A are experimentally shown. This paper is the first to demonstrate the advantages of DGD in the high-voltage, large-current IGBT modules.

## II. DESIGN OF DIGITAL GATE DRIVER USING HB DAC IC AND TWO POWER MOSFETS

Figs. 1 to 3 show a circuit schematic of the proposed DGD including HB DAC IC and two power MOSFETs (Q1 and Q2 : BSC094N06LS5, 60 V, 47 A), a block diagram of the proposed HB DAC IC, and a timing chart of DGD, respectively. DGD is a current-source gate driver. The novelty of this work is that power MOSFETs are used as the output stage of the gate driver to achieve large  $I_{G}$ , and DGD operation is achieved by digitally controlling the gate amplitude ( $V_{GSH}$  and  $V_{GSL}$ ) of the power MOSFETs operating in the saturation region instead of the linear region using the proposed HB DAC IC to achieve the currentsource gate driver. As shown in Fig. 2, HB DAC IC includes two DACs operating with different power supply rails, shift registers for serial inputs to reduce the number of input pins, and an edge detector to generate pulse signals from externally supplied "Timing" signal. HB DAC IC does not include the driver transistors. If all the functions are integrated into a single IC, the chip size will be huge and the cost will be high. By controlling the gate voltage of  $Q_1$  ( $V_{GSH}$ ) with a 16-bit input DAC (Fig. 2),  $I_{\rm G}$  can be digitally varied four times at turn-on (Fig. 3). The four periods from  $t_1$  to  $t_4$  are determined by "Timing" signal, and  $t_1$ to  $t_4$  can be changed independently. The same is true for turnoff.



Fig. 1. Circuit schematic of proposed digital gate driver (DGD) including HB DAC IC and two power MOSFETs.



Fig. 2. Block diagram of proposed half-bridge digital-to-analog converter (HB DAC) IC.



Fig. 4. 16-bit input DAC for Q1. (a) Circuit schematic. (b) Equivalent circuit.

Figs. 4 (a) and (b) show a circuit schematic and an equivalent circuit of the 16-bit input DAC for Q<sub>1</sub>, respectively. This DAC has a similar circuit configuration to DGD with binary weighted gate widths ( $W_P$ ,  $2W_P$ ,  $4W_P$ ,  $8W_P$ ,  $16W_P$ ,  $32W_P$ ,  $64W_P$ ,  $128W_P$ ) in the output stage [4], however, the method of operation is different.  $V_{GSH}$  can be digitally controlled by  $H_n_{PMOS}$  [7:0] and  $H_n_{NMOS}$  [7:0] on the principle of a shunt regulator, where some of the eight pMOSFETs and some of the eight nMOSFETs in Fig. 4 (a) are turned on. This DAC has 16-bit inputs, however, for simplicity, 8-bit digital signals  $H_n_{NMOS}$  [7:0] are fixed and 8-bit digital signals  $H_n_{PMOS}$  [7:0] are varied in this paper.  $V_{GSH}$  can be varied in 256 levels depending on  $H_n_{PMOS}$  [7:0], which is defined as  $H_n_{PMOS}$ , where  $H_n_{PMOS}$  is an integer between 0 and 255.

Fig. 5 shows a die micrograph of HB DAC IC fabricated with 180-nm BCD process. The die size is 2.5 mm by 1.0 mm. Fig. 6 shows a photo of PCB of DGD. HB DAC IC is mounted on the surface of the PCB, and  $Q_1$  and  $Q_2$  are mounted on the back of the PCB.



Fig. 7. Timing charts for turn-on measurement. (a) Conventional single-step gate driving (SGD). (b) Proposed active gate driving (AGD).

#### **III. MEASURED RESULTS**

In this paper, only  $I_{\text{OVERSHOOT}}$  at turn-on discussed and the collector-emitter voltage ( $V_{\text{CE}}$ ) overshoot at turn-off is not discussed, because  $I_{\text{OVERSHOOT}}$  is large, while the voltage overshoot is small, being less than 500 V.

Figs. 7 (a) and (b) show timing charts for the turn-on measurement of the conventional single-step gate driving (SGD) and the proposed active gate driving (AGD), respectively. AGD is based on the stop-and-go gate driving [9]. In AGD, only two periods ( $t_1$  and  $t_2$ ) out of four periods ( $t_1$  to  $t_4$ ) in Fig. 3 are used for simplicity. *n* is varied in SGD and  $n_1$  is varied in AGD, where *n* and  $n_1$  are integers between 0 and 255. *m* is common to SGD and AGD, where *m* is 60 or 100 in this paper.

Fig. 8 shows the measured *n* dependence  $V_{\text{GSH}}$  in SGD to demonstrate the successful operation of 8-bit DAC at  $V_{\text{DD3}} =$  $V_{\text{DD4}} = 3.5$  V and 4 V and m = 60 and 100.  $V_{\text{GSH}}$  is monotonically increasing with *n*, although DAC is nonlinear. The maximum output current of DAC is 100 mA. Fig. 9 shows the measured *n* dependence  $I_{\text{G}}$  in SGD to demonstrate the successful operation of 8-bit DGD at  $V_{\text{DD3}} = V_{\text{DD4}} = 3.5$  V and 4 V and m = 60 and 100. To investigate the performance of DGD itself, a 100 µF capacitor is connected to the output of DGD and  $I_{\text{G}}$  is measured.



Fig. 8. Measured *n* dependence  $V_{\text{GSH}}$  in SGD to demonstrate operation of 8-bit DAC.



Fig. 9. Measured n dependence  $I_{\rm G}$  in SGD to demonstrate operation of 8-bit DGD.

 $I_{\rm G}$  is monotonically increasing with *n*, although it is nonlinear. The maximum  $I_{\rm G}$  is 58 A.

Figs. 10 and 11 show a circuit schematic and a measurement setup of the double pulse test using DGD and two IGBT modules (Q<sub>3</sub> and Q<sub>4</sub> : CM1000HG-130XA, 6500 V, 1000 A) at 3000 V and 1000 A, respectively. Fig. 12 shows the measured  $E_{LOSS}$  vs.  $I_{OVERSHOOT}$  at  $V_{DD3} = V_{DD4} = 3.5$  V and m = 100. The black line shows the trade-off curve of the conventional SGD (Fig. 7 (a)) with varied *n* from 175 to 255. The red star shows the proposed AGD (Fig. 7 (b)) at  $n_1 = 223$ . Compared with SGD, the proposed AGD reduces  $E_{LOSS}$  from 6.9 J to 4.8 J by 30 % at the same  $I_{OVERSHOOT}$  of 1.3 kA and reduces  $I_{OVERSHOOT}$  from 1560 A to 1330 A by 15 % at the same  $E_{LOSS}$  of 5 J, which clearly shows the advantage of DGD for the 6500 V, 1000 A IGBT module.



Fig. 10. Circuit schematic of double pulse test.



Fig. 11. Measurement setup of double pulse test.

Fig. 13 shows corresponding measured waveforms in Fig. 12. Fig. 13 (a) shows the measured waveforms of SGD at n = 175 with the smallest  $I_G$ , achieving the smallest  $I_{OVERSHOOT}$  and the largest  $E_{LOSS}$ . In contrast, Fig. 13 (b) shows the measured waveforms of SGD at n = 255 with the largest  $I_G$ , achieving the smallest  $E_{LOSS}$  and the largest  $I_{OVERSHOOT}$ . The maximum measured  $I_G$  is 14 A. Fig. 13 (d) shows the measured waveforms of SGD with the same  $I_{OVERSHOOT}$  and  $E_{LOSS}$  as AGD, respectively. In Fig. 13 (d), AGD achieves low  $E_{LOSS}$  and  $I_{OVERSHOOT}$  by setting  $I_G$  to zero just before the timing of  $I_{OVERSHOOT}$ . In Fig. 13 (d), the maximum measured  $I_G$  is 10 A.

Table I shows a comparison table of DGDs. The proposed DGD using HB DAC IC and two power MOSFETs achieves the largest  $V_{\text{SWING}}$  of 30 V and the largest  $I_{\text{G}}$  of 58 A in DGDs. This paper is the first to demonstrate the advantages of DGD in the high-voltage, large-current IGBT modules.



Fig. 12. Measured ELOSS vs. IOVERSHOOT of conventional SGD and proposed AGD.



Fig. 13. Measured waveforms in Fig. 12. (a) Conventional SGD at n = 175. (b) Conventional SGD at n = 255. (c) Conventional SGD at n = 177. (d) Proposed AGD. (e) Conventional SGD at n = 180.

|                                 | TIA'17 [2]              | ISPSD'20<br>[3]          | ISPSD'21<br>[4]      | TPEL'21 [5]                     | This<br>work        |
|---------------------------------|-------------------------|--------------------------|----------------------|---------------------------------|---------------------|
| Target power<br>device          | Si IGBT &<br>SiC MOSFET | GaN FET                  | GaN FET              | GaN FET                         | Si IGBT             |
| Process                         | 180 nm<br>BCD           | 180 nm<br>BCD            | 180 nm<br>BCD        | 180 nm HV<br>CMOS               | 180 nm<br>BCD       |
| Chip area                       | 6.25 mm <sup>2</sup>    | 1.97 mm <sup>2</sup>     | 4.32 mm <sup>2</sup> | 5.0 mm <sup>2</sup>             | 2.5 mm <sup>2</sup> |
| Output voltage swing            | 15 V                    | 3.3 V                    | 5 V                  | 5 V                             | 30 V                |
| Levels of I <sub>G</sub>        | 6 bit                   | 7 bit                    | 6 bit                | 8 bit (coarse),<br>6 bit (fine) | 8 bit               |
| Max. I <sub>G</sub>             | 5 A                     | 3.3 V / 0.5 Ω<br>= 6.6 A | 5 A                  | 5 V / 0.12 Ω<br>= 42 A          | 58 A                |
| Functions<br>integrated into IC | 1 driver                | 1 driver                 | 1 driver             | 1 driver                        | 2 DACs              |

Table I. Comparison table of DGDs.

## IV. CONCLUSIONS

8-bit DGD using HB DAC IC and two power MOSFETs is proposed to enable  $V_{SWING}$  of ± 15 V and large  $I_G$  up to 58 A for the 6500 V, 1000 A IGBT modules. In the turn-on measurements of IGBT at 3000 V and 1000 A, compared with SGD, the proposed AGD reduces  $E_{LOSS}$  from 6.9 J to 4.8 J by 30 % at the same  $I_{OVERSHOOT}$  of 1.3 kA and reduces  $I_{OVERSHOOT}$ from 1560 A to 1330 A by 15 % at the same  $E_{LOSS}$  of 5 J, which clearly shows the advantage of DGD for the 6500 V, 1000 A IGBT module.

#### ACKNOWLEDGMENT

The authors would like to thank Kenji Hatori, Kazuto Mikami, and Koji Tanaka of Mitsubishi Electric Corporation for the technical discussion and the support for measurements. This work was partially supported by NEDO (JPNP21009).

#### REFERENCES

- V. Escrouzailles, E. Rabasse and J. Coiret, "Improved performances of 6,5kV IGBT module by using current source gate driver," in *Proc. 11th International Conference on Integrated Power Electronics Systems*, Mar. 2020, pp. 1-6.
- [2] K. Miyazaki, S. Abe, M. Tsukuda, I. Omura, K. Wada, M. Takamiya, and T. Sakurai, "General-purpose clocked gate driver IC with programmable 63-level drivability to optimize overshoot and energy loss in switching by a simulated annealing algorithm," *IEEE Trans. Ind. Appl.*, vol.53, no.3, pp. 2350-2357, May/June 2017.
- [3] W. J. Zhang, J. Yu, Y. Leng, W. T. Cui, G. Q. Deng, and W. T. Ng, "A segmented gate driver for E-mode GaN HEMTs with simple driving strength pattern control," in *Proc. IEEE Int. Symp. Power Semicond. Devices ICs*, Sep. 2020, pp. 102-105.
- [4] R. Katada, K. Hata, Y. Yamauchi, T. -W. Wang, R. Morikawa, C. -H. Wu, T. Sai, P. -H. Chen, and M. Takamiya, "5 V, 300 MSa/s, 6-bit digital gate driver IC for GaN achieving 69 % reduction of switching loss and 60 % reduction of current overshoot," in *Proc. IEEE Int. Symp. Power Semicond. Devices ICs*, May 2021, pp. 55-58.
- [5] D. Liu, H. C. P. Dymond, S. J. Hollis, J. Wang, N. McNeill, D. Pamunuwa, and B. H. Stark, "Full custom design of an arbitrary waveform gate driver with 10-GHz waypoint rates for GaN FETs," *IEEE Trans. Power Electron.*, vol. 36, no. 7, pp. 8267-8279, July 2021.
- [6] S. Kawai, T. Ueno, H. Ishihara, S. Takaya, K. Miyazaki and K. Onizuka, "A Ins-resolution load adaptive digital gate driver IC with integrated 500ksps ADC for drive pattern selection and functional safety targeting dependable SiC application," in *Proc. IEEE Energy Conversion Congress* and *Exposition*, Oct 2021, pp. 5417-5421.
- [7] W. J. Zhang, J. Yu, W. T. Cui, Y. Leng, J. Liang, Y.-T. Hsieh, H.-H. Tsai, Y.-Z. Juang, W.-K. Yeh, and W. T. Ng"A smart gate driver IC for GaN power HEMTs with dynamic ringing suppression," *IEEE Trans. on Power Electronics*, vol. 36, no. 12, pp. 14119-14132, Dec 2021.
- [8] S. Fukunaga, H. Takayama and T. Hikihara, "A study on switching surge voltage suppression of SiC MOSFET by digital active gate drive," in *Proc. IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)*, May 2021, pp. 1325-1330.
- [9] T. Sai, K. Miyazaki, H. Obara, T. Mannen, K. Wada, I. Omura, T. Sakurai, and M. Takamiya, "Stop-and-go gate drive minimizing test cost to find optimum gate driving vectors in digital gate drivers," in *Proc. IEEE Appl. Power Electron, Conf. Expo.*, Mar. 2020, pp. 3096-3101.