2-Phase Series Capacitor Synchronous Rectifier in Active Clamp Forward Converter

Katsuhiro Hata ${ }^{1}$, Sadanori Suzuki ${ }^{2}$, Kenichi Watanabe ${ }^{2}$, Kenichi Nagayoshi ${ }^{2}$, and Makoto Takamiya ${ }^{1}$
${ }^{1}$ The University of Tokyo, Tokyo, Japan
${ }^{2}$ Toyota Industries Corporation, Aichi, Japan
E-mail: khata@iis.u-tokyo.ac.jp

Abstract

A 2-phase series capacitor synchronous rectifier (SC-SR) in active clamp forward (ACF) converters is proposed to solve the inductor cooling problems caused by the recent trend of increasing the output current. The proposed 2-phase SC-SR can achieve the interleaved operation by adding only one flying capacitor to the $\mathbf{2}$-parallel conventional SRs without increasing the number of the primary circuit elements and transformer. Furthermore, the proposed 2-phase SC-SR can achieve the automatic inductor current balancing, which helps distribute the heat evenly in the two inductors. In the measurement at 140 V -to- 5 V conversion, the peak efficiency of the ACF converters with the proposed 2 -phase SC-SR and conventional SR was 90.3% and 85.9% at 28 Aout, respectively, resulting in the improvement in efficiency by 4.4%. In addition, the interleaved operation of the proposed 2phase SC-SR reduced the output current ripple from 10.8 A to 6.4 A compared to the conventional SR at 40 Aout. The current imbalance between the two output inductors of the proposed 2phase SC-SR was less than $\mathbf{1 0 \%}$ under heavy load even without any control or compensation, demonstrating the practicability of the proposed 2-phase SC-SR in ACF converters.

Keywords- Active clamp forward converter, Synchronous rectifier, Series capacitor converter, current sharing.

I. Introduction

Active clamp forward (ACF) converters [1-2] are suitable for a high step-down conversion in applications such as EV/HEV, servers, and data centers [3-5]. The trend of increasing the output current in recent years, however, causes problems due to the increased heat generation in the output inductor of the ACF converter with the conventional synchronous rectifier (SR), which is shown in Fig. 1. To suppress the heat generated in the inductor, it is conceivable to connect the converters in parallel and perform the interleaved operation [6-8]. Alternatively, to reduce the increase in the number of elements including transformers, paralleling only the secondary circuit is also possible, but this way cannot achieve interleaving because the transformer is shared and the secondary circuit operation depends on the secondary current of the transformer. In addition, paralleling two inductors without interleaving increases the output current and voltage ripple due to the reduced equivalent inductance. In order to prevent this, it is necessary to increase the inductor size.

To solve these problems, this paper proposes a 2-phase series capacitor synchronous rectifier (SC-SR), which can be regarded as applying a circuit topology of non-isolated 2phase series capacitor (SC) buck converters with two output inductors [9-13] to the synchronous rectifier in isolated DCDC converters. Similar to the non-isolated SC buck converter, the proposed SC-SR can achieve the interleaved operation and current balancing of the two output inductors in the isolated DC-DC converter, distributing the heat evenly to the two inductors. In this paper, the operating principle of the proposed 2-phase SC-SR in an ACF converter is presented and the practical feasibility of the proposed 2-phase SC-SR is demonstrated by experiments.

Fig. 1. Active clamp forward converter with conventional synchronous rectifier.

Fig. 2. Active clamp forward converter with proposed 2-phase series capacitor synchronous rectifier (SC-SR).

II. Proposed 2-Phase Series Capacitor Synchronous Rectifier (SC-SR)

A. Circuit operation

Fig. 2 shows the ACF converter with the proposed 2-phase SC-SR, which consists of 4 switches, 2 inductors, and 1 flying capacitor. The phase A consists of Q_{Sla} and $Q_{\mathrm{S} 2 \mathrm{a}}$, where Q_{Sla} is operated synchronously with $Q_{\mathrm{P} 1}$, and $Q_{\mathrm{S} 2 \mathrm{a}}$ is alternately turned on and off with $Q_{\text {sla }}$ in continuous current mode. The phase B is composed of $Q_{\mathrm{s} 1 \mathrm{~b}}$ and $Q_{\mathrm{s} 2 \mathrm{~b}}$, where $Q_{\mathrm{s} \text { ıb }}$ is operated with 180° phase difference from $Q_{\text {sla }}$ for interleaving and $Q_{S 2 b}$ are also alternately turned on and off Q_{Slb} in continuous current mode. The duty cycles D_{a} and D_{b} are defined as the on-time ratios of Q_{Sla} and Q_{Sl} in each phase and this paper assumes that D_{a} and D_{b} do not exceed 50%.

Focusing on the circuit operation in a steady state, the main circuit states and ideal waveforms of the proposed 2-phase SC-SR are shown in Figs. 3 and 4. During state 1, $Q_{\text {sla }}$ in the phase A is turned on synchronously with $Q_{\mathrm{P} 1}$, where the series capacitor C_{t} is connected in series with L_{a} and the transformer supplies the current I_{La}, which charges C_{t}. Also, $Q_{\mathrm{S} 2 \mathrm{~b}}$ is on in the phase B, so I_{Lb} freewheels through $Q_{\mathrm{S} 2 \mathrm{~b}}$. During state 2, $Q_{\text {Sla }}$ is turned off synchronously with $Q_{\mathrm{P} 1}$ and the transformer stops supplying the current, so the current path of I_{La} changes from $Q_{\text {sla }}$ to $Q_{\mathrm{s} 2 \mathrm{a}}$. Since I_{Lb} continues to freewheel through $Q_{\mathrm{s} 2 \mathrm{~b}}, C_{\mathrm{t}}$ is neither charged nor discharged, keeping the voltage V_{Ct} constant. During state $3, Q_{\mathrm{S} 1 \mathrm{~b}}$ turns on instead of $Q_{\mathrm{S} 2 \mathrm{~b}}$ in the phase B , where C_{t} is connected in series with L_{b} and supplies the current I_{Lb}, which discharges C_{t}. Also, $Q_{\mathrm{S} 2 \mathrm{a}}$ is on in the phase A and I_{La} continues to flow through $Q_{\text {S2a }}$. Finally,

Fig. 3. Main circuit states in the proposed 2-phase SC-SR.
during state $4, Q_{\mathrm{S} 2 \mathrm{~b}}$ turns on instead of Q_{Slb}, so I_{La} and I_{Lb} freewheel through $Q_{\mathrm{S} 2 \mathrm{a}}$ and $Q_{\mathrm{s} 2 \mathrm{~b}}$ as in state 2 .

B. Voltage conversion ratio

Based on the voltage-second balance in L_{a} and L_{b}, the output voltage V_{O} of the ACF converter with the proposed 2phase SC-SR is given as follows:

$$
\begin{align*}
0 & =\left\langle V_{\mathrm{La}}\right\rangle \\
& =\left(\frac{n_{\mathrm{S}}}{n_{\mathrm{P}}} V_{\mathrm{IN}}-V_{\mathrm{Ct}}-V_{\mathrm{O}}\right) D_{a} T_{\mathrm{S}}+\left(0-V_{\mathrm{O}}\right)\left(1-D_{a}\right) T_{\mathrm{S}} \\
& \Leftrightarrow \quad V_{\mathrm{O}}=\left(\frac{n_{\mathrm{S}}}{n_{\mathrm{P}}} V_{\mathrm{IN}}-V_{\mathrm{Ct}}\right) D_{a} \tag{1}\\
0 & =\left\langle V_{\mathrm{Lb}}\right\rangle \\
& =\left(V_{\mathrm{Ct}}-V_{\mathrm{O}}\right) D_{b} T_{\mathrm{S}}+\left(0-V_{\mathrm{O}}\right)\left(1-D_{b}\right) T_{\mathrm{S}} \\
& \Leftrightarrow \quad V_{\mathrm{O}}=V_{\mathrm{Ct}} D_{b} \tag{2}
\end{align*}
$$

where $V_{\mathrm{IN}},\left\langle V_{\mathrm{La}}\right\rangle,\left\langle V_{\mathrm{Lb}}\right\rangle, n_{\mathrm{P}}, n_{\mathrm{S}}$, and T_{S} are the input voltage, the average induced voltage of L_{a}, the average induced voltage of L_{b}, the number of transformer primary winding turns, the number of transformer secondary winding turns, and the switching period, respectively.

Since V_{Ct} and V_{O} are derived according to (1) and (2), the voltage conversion ratio M of the ACF converter with the proposed 2-phase SC-SR is obtained as follows:

$$
\begin{align*}
& V_{\mathrm{Ct}}=\frac{n_{\mathrm{S}}}{n_{\mathrm{p}}} \frac{D_{\mathrm{a}}}{D_{\mathrm{a}}+D_{\mathrm{b}}} V_{\mathrm{IN}} \tag{3}\\
& V_{\mathrm{O}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} \frac{D_{\mathrm{a}} D_{\mathrm{b}}}{D_{\mathrm{a}}+D_{\mathrm{b}}} V_{\mathrm{IN}} \tag{4}
\end{align*}
$$

Fig. 4. Idealized waveforms of the proposed 2-phase SC-SR.

Fig. 5. Voltage conversion ratio M vs. duty cycle $D\left(=D_{\mathrm{a}}=D_{\mathrm{b}}\right)$.

$$
\begin{equation*}
M=\frac{V_{\mathrm{O}}}{V_{\mathrm{IN}}}=\frac{n_{\mathrm{S}}}{n_{\mathrm{p}}} \frac{D_{\mathrm{a}} D_{\mathrm{b}}}{D_{\mathrm{a}}+D_{\mathrm{b}}} . \tag{5}
\end{equation*}
$$

Fig. 5 shows M as functions of D in the ACF converter with the proposed 2-phase SC-SR and conventional SR, where $D=D_{\mathrm{a}}=D_{\mathrm{b}}$ is assumed for simplicity. The proposed 2-phase SC-SR achieve half the step-down ratio with the same $n_{\mathrm{P}}, n_{\mathrm{S}}$, and D as the conventional SR. In other words, the proposed 2-

TABLE I. COMPARISON OF NUMBER OF COMPONENTS AND FEATURES IN CIRCUIT CONFIGURATIONS.

	Switch number	Transformer number	Inductor number	Flying capacitor number	Inductor current	Current balancing	Interleaving
ACF converter with SR (Fig. 1)	$\begin{aligned} & \text { Pri.: } 2 \\ & \text { Sec.: } 2 \end{aligned}$	1	1	-	$I_{\text {O }}$	-	-
2-parallel ACF converters with SR (Fig. 6)	$\begin{aligned} & \hline \text { Pri.: } 4 \\ & \text { Sec.: } 4 \\ & \hline \end{aligned}$	2	2	-	$I_{\mathrm{O}} / 2$ (If ideal)	$\begin{gathered} \text { Yes } \\ \text { (Control required) } \end{gathered}$	Yes
ACF converter with 2-parallel SRs (Fig. 7)	$\begin{aligned} & \hline \text { Pri.: } 2 \\ & \text { Sec.: } 4 \\ & \hline \end{aligned}$	1	2	-	$I_{\mathrm{O}} / 2$ (If ideal)	No	No
ACF converter with proposed 2-phase SC-SR (Fig. 2)	$\begin{aligned} & \text { Pri.: } 2 \\ & \text { Sec.: } 4 \end{aligned}$	1	2	1	$I_{\mathrm{O}} / 2$	Yes (Automatic)	Yes

phase SC-SR can reduce the number of transformer primary winding turns to half that of the conventional SR in order to achieve the same step-down ratio, contributing to a reduction in the copper loss due to the transformer primary windings.

C. Inductor current sharing

In terms of cooling the inductors, it is important to properly share the output current between the two inductors. This paper presents that the proposed 2-phase SC-SR can achieve the automatic inductor current balancing without the need for control under ideal conditions.

Since the output current I_{O} of the ACF converter with the proposed 2-phase SC-SR is supplied through L_{a} and L_{b}, the following equation is given.

$$
\begin{equation*}
I_{\mathrm{O}}=I_{\mathrm{L}}=I_{\mathrm{La}}+I_{\mathrm{Lb}} \tag{6}
\end{equation*}
$$

Considering the charge balance at C_{t} in a steady state, the amount of charge flowing into C_{t} in state 1 and the amount of charge flowing out from C_{t} in state 3 are the same, so the following equation is obtained.

$$
\begin{align*}
& \left\langle Q_{\mathrm{Ct}}\right\rangle=I_{\mathrm{La}} D_{\mathrm{a}} T_{\mathrm{S}}-I_{\mathrm{Lb}} D_{\mathrm{b}} T_{\mathrm{S}}=0 \\
& \Leftrightarrow I_{\mathrm{La}} D_{\mathrm{a}}=I_{\mathrm{Lb}} D_{\mathrm{b}} \tag{7}\\
& \frac{I_{\mathrm{La}}}{I_{\mathrm{Lb}}}=\frac{D_{\mathrm{b}}}{D_{\mathrm{a}}} \tag{8}
\end{align*}
$$

As a result, the ratio of I_{La} and I_{Lb} is determined only by the ratio of D_{a} and D_{b} without depending on the circuit parameters. Therefore, the inductor current balance can be achieved automatically by satisfying the condition of $D_{\mathrm{a}}=D_{\mathrm{b}}$, where I_{La} and I_{Lb} share half of I_{O} as follows:

$$
\begin{equation*}
I_{\mathrm{La}}=I_{\mathrm{Lb}}=\frac{I_{\mathrm{O}}}{2} \tag{9}
\end{equation*}
$$

In practice, there are the dead-time periods in addition to the main circuit states shown in Figs. 3 and 4, so some compensation may be required to achieve the perfect current balance. However, if the current imbalance in the proposed 2phase SC-SR is practically permissible, there is a sufficient possibility of practical use.

TABLE I summarizes the discussions and shows the comparison of the circuit configurations. Although the 2parallel ACF converters with the conventional SR shown in Fig. 6 require many circuit elements, the interleave operation is applicable. However, due to parameter variations, the

Fig. 6. 2-parallel active clamp forward converters with conventional synchronous rectifier.

Fig. 7. Active clamp forward converter with 2-parallel conventional synchronous rectifiers.
current control is necessary to achieve the inductor current balance. The ACF converter with the 2-parallel conventional SRs shown in Fig. 7 can reduce the number of circuit elements, but it cannot achieve the interleaved operation and current balancing because the inductor current distribution depends on the circuit parameters. The ACF converter with the proposed 2-phase SC-SR can achieve the interleaved operation and current balancing by adding only one flying capacitor to the 2-parallel conventional SRs.

III. EXPERIMENTAL VERIFICATION

A. Experomental setup and conditions

To demonstrate the feasibility of the proposed 2-phase SCSR , experiments were conducted with the ACF converter prototype shown in Fig. 8. The primary circuit and transformer

Fig. 8. Experimental prototype for active clamp forward converter with the proposed 2-phase SC-SR.
was taken from the DC-DC converter for Toyota Yaris HV, and the proposed 2-phase SC-SR, which is the secondary side rectifier circuit, was fabricated using the $61.0 \mathrm{~mm} \times 58.4 \mathrm{~mm}$ 2-layer PCB with replaceable inductors, which was used in two pairs each of 2 turns and 8 turns. The pair of 2 -turn inductors was used for the efficiency and waveform measurements to clearly observe the change in the output current ripple and its effect due to the interleaved operation of the proposed 2-phase SC-SR. On the other hand, the pair of 8turn inductors was used for the current balance measurement to verify the operation of the proposed 2-phase SC-SR in continuous current mode.

The experimental conditions and selected components are listed in TABLE II. In order to compare the operating waveforms and efficiency of the conventional SR and proposed 2-phase SC-SR, the conventional $S R$ was implemented using $Q_{\mathrm{Sla}}, Q_{\mathrm{S} 2 \mathrm{~b}}$, and L_{b} in Fig. 8 (b), where Q_{Slb} was bypassed using a shunt resistor and L_{a} was removed. Then, Q_{Sla} was operated synchronously with $Q_{\mathrm{P} 1}$, and $Q_{\mathrm{S} 2 \mathrm{~b}}$ was alternately turned on and off with $Q_{\text {sla }}$.

The proposed 2-phase SC-SR was operated as shown in Fig 4. Then, according to (6) and (8), the distribution of I_{La} and I_{Lb} can be actively changed using D_{a} and D_{b} as follows:

$$
\begin{equation*}
I_{\mathrm{La}}=\frac{D_{b}}{D_{a}+D_{b}} I_{\mathrm{O}} \tag{10}
\end{equation*}
$$

TABLE II. EXPERIMENTAL CONDITIONS AND SELECTED COMPONENTS.

Parameters	Value and Design Selection
Input voltage V_{IN}	140 V
Output voltage V_{OUT}	5 V
Switching frequency	200 kHz
Transformer turns ratio $n_{\mathrm{P}}: n_{\mathrm{S}}$	$4: 1$
Power MOSFETs $Q_{\mathrm{P} 1-2}$	$600 \mathrm{~V}, 29 \mathrm{~A}, R_{\mathrm{DS}(\text { on }) \text { max }}: 99 \mathrm{~m} \Omega$, FMC 60 N 099 S 2 A, Fuji Electric
Power MOSFETs	$100 \mathrm{~V}, 180 \mathrm{~A}, R_{\mathrm{DS}(\mathrm{on}), \text { max }}: 2.3 \mathrm{~m} \Omega$,
$Q_{\mathrm{Sla}}, Q_{\mathrm{S} 2 \mathrm{a}}, Q_{\mathrm{SIb}}, Q_{\mathrm{S} 2 \mathrm{~b}}$	$\mathrm{STH} 315 \mathrm{~N} 10 \mathrm{~F} 7-6$, STMicroelectronics

(a) $V_{\mathrm{DS}, \mathrm{Sla}}, V_{\mathrm{DS}, \mathrm{S} 2 \mathrm{a}}, V_{\mathrm{DS}, \mathrm{Slb}}$, and $V_{\mathrm{DS}, S 2 \mathrm{~b}}$.

(b) $V_{\mathrm{O}}, V_{\mathrm{Ct}}, I_{\mathrm{L}}, I_{\mathrm{La}}$, and I_{Lb}.

Fig. 9. Measured waveforms of the proposed 2-phase SC-SR at $I_{\mathrm{O}}=40 \mathrm{~A}$.

Fig. 10. Measured waveforms of the conventional SR at $I_{\mathrm{O}}=40 \mathrm{~A}$.

$$
\begin{equation*}
I_{\mathrm{Lb}}=\frac{D_{\mathrm{a}}}{D_{\mathrm{a}}+D_{\mathrm{b}}} I_{\mathrm{O}} \tag{11}
\end{equation*}
$$

Therefore, the waveforms and efficiency of the proposed 2-phase SC-SR were measured with the perfect current balance achieved. Since the step-down ratio M also varies depending on D_{a} and D_{b} in this experiment, D_{a} and D_{b} were manually adjusted so that the output voltage V_{O} matched the target value, which was set to 5 V .

B. Measured waveforms and efficiency

Figs. 9 and 10 show the measured waveforms of the proposed 2-phase SC-SR and conventional SR, respectively. Although the voltage waveforms of each switch shown in Fig. 9 (a) contain ringing, the steady waveforms are consistent with Fig. 4, demonstrating the validity of the circuit analysis in this study. In addition, the waveform of V_{Ct} shown in Fig. 9 (b) indicates charging in state 1 and discharging in state 3 , demonstrating the expected circuit operation. Furthermore, the proposed 2-phase SC-SR achieved the interleaved operation, which reduced the current ripple ΔI_{L} from 10.8 A to 6.4 A compared to the conventional SR at $I_{\mathrm{O}}=40 \mathrm{~A}$.

Fig. 11 shows the measured efficiency comparison between the ACF converters with the proposed 2-phase SCSR and conventional SR. The peak efficiency of the proposed 2-phase SC-SR and conventional SR is 90.3% and 85.9% at $I_{\mathrm{O}}=28 \mathrm{~A}$, respectively, resulting in the improvement in efficiency by 4.4%. In addition, compared with the conventional SR, the proposed 2-phase SC-SR can reduce the efficiency drop under heavy load. These results indicate that the proposed SC-SR can reduce the heat generation in the inductors under heavy load conditions.

C. Measured inductor current difference

In order to demonstrate the practicality of the proposed 2phase SC-SR, the experiment was conducted to show how much current balance can be achieved without any control or compensation. In this experiment, both D_{a} and D_{b} were set constant at 40% and V_{O} was not regulated.

Figs. 12 and 13 show the measured inductor DC currents and normalized current difference between the inductors in the proposed 2-phase SC-SR. As the output current increased, the current imbalance decreased and was below 10% at heavy load. Since the heat generation of the inductors is dominant under heavy load, the experimental results demonstrate the practicality of the proposed 2-phase SC-SR. It is expected that the current imbalance can be further reduced by proposing a compensation operation that considers the dead time, which is one of the important issues in future work.

IV. Conclusions

A 2-phase series capacitor synchronous rectifier (SC-SR) in active clamp forward (ACF) converters was proposed to solve the output inductor cooling problems caused by the recent trend of increasing the output current. This paper presented that the proposed 2-phase SC-SR achieved the interleaved operation by adding only one flying capacitor to the 2-parallel conventional SRs without increasing the number of the primary circuit elements and transformer. In addition, the inductor current balancing in the proposed 2-phase SC-SR was analytically described based on the ideal circuit operation.

In the measurement at 140 V-to- 5 V conversion, the interleaved operation of the proposed 2-phase SC-SR reduced the output current ripple from 10.8 A to 6.4 A compared to the conventional SR at $40 \mathrm{~A}_{\text {out }}$. The peak efficiency of the

Fig. 11. Measured efficiency comparison between the ACF converters with the proposed 2-phase SC-SR and conventional SR.

Fig. 12. Measured inductor DC currents in the ACF converter with the proposed 2-phase SC-SR.

Fig. 13. Normalized current difference between the inductors in the ACF converter with the proposed 2-phase SC-SR.
proposed 2-phase SC-SR and conventional SR was 90.3 \% and 85.9% at 28 Aout, resulting in the improvement in efficiency by 4.4%. The current imbalance between the two output inductors of the proposed 2-phase SC-SR was less than 10% under heavy load even without any control or compensation. These results demonstrated the practicability of the proposed 2-phase SC-SR in ACF converters.

As future work, a parameter optimization including the dead time and the active clamp capacitance of ACF converter will be conducted to improve the converter performance. In addition, a control strategy to achieve the output voltage regulation and the inductor current balancing at the same time will be proposed.

AckNOWLEDGMENT

This work was partly supported by JSPS KAKENHI Grant Number 22K14235.

References

[1] Q. M. Li, and F. C. Lee, "Design consideration of the active-clamp forward converter with current mode control large-signal transient," IEEE Transactions on Power Electronics, vol. 18, no. 4, pp. 958-965, Jul. 2003.
[2] B.-R. Lin, K. Huang, and D. Wang, "Analysis, design, and implementation of an active clamp forward converter with synchronous rectifier," IEEE Transactions on Circuit and Systems I, vol. 53, no. 6, pp. 1310-1319, Jun. 2006.
[3] P. Rehlaender, T. Grote, F. Schafmeister, and J. Boecker, "Analytical modeling and design of an active clamp forward converter applied as a single-stage on-board DC-DC converter for EVs," in Proc. PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2019, pp. 1-8.
[4] X. Zhang, B. Nguyen, A. Ferencz, T. Takken, R. Senger, and P. Coteus, "A $12-$ or $48-\mathrm{V}$ input, $0.9-\mathrm{V}$ output active-clamp forward converter power block for servers and datacenters," IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 1721-1731, Feb. 2020.
[5] D. Kim, Y. Yamauchi, X. Meng, T. Jia, L. McAuliffe, T. Takken, K. Tien, S. Tian, Y. Yao, A. Ferencz, M. Seok, and X. Zhang, "An integrated programmable gate timing control and gate driver chip for a $48 \mathrm{~V}-\mathrm{to}-0.75 \mathrm{~V}$ active-clamp forward converter power block," in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2020, pp. 130-134.
[6] M. T. Zhang, M. M. Jovanovic, and F. C. Y. Lee, "Analysis and evaluation of interleaving techniques in forward converters," IEEE Transactions on Power Electronics, vol. 13, no. 4, pp. 690-698, Jul. 1998.
[7] Y. Lo, T. Kao, and J. Lin, "Analysis and design of an interleaved active-clamping forward converter," IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 2323-2332, Aug. 2007.
[8] T. Jin, K. Zhang, K. Zhang, and K. Smedley, "A new interleaved series input parallel output (ISIPO) forward converter with inherent demagnetizing features," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 888-895, Mar. 2008.
[9] K. Nishijima, K. Harada, T. Nakano, T. Nabeshima, and T. Sato, "Analysis of double step-down two-phase buck converter for VRM," in Proc. IEEE Telecommunications Energy Conference (INTELEC), 2005, pp. 497-502.
[10] J. Yungtaek, M. M. Jovanovic, and Y. Panov, "Multiphase buck converters with extended duty cycle," in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), 2006, pp. 38-44.
[11] B. Oraw, and R. Ayyanar, "Small signal modeling and control design for new extended duty ratio, interleaved multiphase synchronous buck converter," in Proc. IEEE Telecommunications Energy Conference (INTELEC), 2006, pp. 1-8.
[12] P. S. Shenoy, M. Amaro, J. Morroni, and D. Freeman, "Comparison of a buck converter and a series capacitor buck converter for highfrequency, high-conversion-ratio voltage regulators," IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 7006-7015, Oct. 2016.
[13] P. S. Shenoy, O. Lazaro, M. Amaro, R. Ramani, W. Wiktor, B. Lynch, and J. Khayat, "Automatic current sharing mechanism in the series capacitor buck converter," in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 2003-2009.

