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Abstract— Natural active gate driving (NAGD) using an 

ordinary gate driver is proposed to reduce both loss and noise 

during switching transients of power devices. In NAGD, in a 4-

pin IGBT or SiC MOSFET, the ground pin of an ordinary gate 

driver is connected to the power emitter (PE) in IGBT or power 

source (PS) in SiC MOSFET instead of the Kelvin emitter (KE) 

or Kelvin source (KS). Active gate driving is naturally achieved 

because the internal gate-to-emitter or gate-to-source voltage 

temporarily drops during power device turn-on due to an 

induced voltage caused by the parasitic inductance between the 

KE and PE in IGBT or the KS and PS in SiC MOSFET. The 600 

V double pulse tests are conducted using IGBT module at load 

current (IL) of 20 A, 50 A, and 80 A, and using SiC module at IL 

of 70 A. The switching loss (ELOSS) and collector or drain current 

overshoot (IOVERSHOOT) of the conventional gate driving (CGD) 

and the proposed NAGD are compared, and the results is shown 

on tradeoff curves. In measurement of IGBT module, where IL 

equals 80 A, compared with the CGD, the proposed NAGD 

reduces ELOSS by 49 % under IOVERSHOOT-aligned condition and 

IOVERSHOOT by 33 % under ELOSS-aligned condition. In 

measurement of SiC module, the NAGD achieves a 26 % 

reduction in ELOSS and a 25 % reduction in IOVERSHOOT under 

conditions align with IOVERSHOOT and ELOSS. 

Keywords—switching loss, current overshoot, emitter and 

source inductance, active gate driving, trade-off curve 

I. INTRODUCTION 

Active gate driving (AGD), which changes the gate 
driving strength multiple times in fine time slots during the 
switching period of power devices, is attracting attention as 
a technology that can solve the trade-off problem between 
loss and noise during power device switching. AGD, 
however, is not yet widely used, because it requires a 
complex and special active gate driver, which is expensive 
to implement. Specifically, to control the gate waveform for 
AGD, open-loop active gate drivers [1-2] require many input 
pins, while closed-loop active gate drivers [3-8] require 
sensors and controllers. To solve the problem, in this paper, 
natural active gate driving (NAGD) is proposed to realize 
AGD using an ordinary gate driver. With the parasitic emitter 
inductance in IGBT or source inductance in SiC MOSFET, 

negative feedback is achieved naturally because of emitter or 
source degeneration when the load current (IL) goes through 
power devices. Therefore, the control circuits are not required.  

II. PROPOSED NATURAL ACTIVE GATE DRIVING (NAGD) 

Figs. 1 and 2 show circuit schematics of the conventional 
gate driving (CGD) and the proposed NAGD when using 
IGBT and SiC MOSFET, respectively. In a 4-pin power 
device, the ground pin of an ordinary gate driver is connected 
to the Kelvin emitter (KE) or Kelvin source (KS) in CGD, 

Fig. 1. Schematic of CGD and NAGD for IGBT. 

Fig. 2. Schematic of CGD and NAGD for SiC. 
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while it is connected to the power emitter (PE) or power 
source (PS) in NAGD. Figs. 1 (a), (b) and Figs. 2 (a), (b) can 
be said to be the comparisons between 4-pin and a 3-pin 

power device, since the connection of NAGD is the same as 
for a 3-pin IGBT or SiC MOSFET without the KE or KS. 
Since the mechanism of NAGD is the same in IGBT and SiC 

 

Fig. 3. Timing charts and tradeoff curve of CGD and NAGD. (a) Timing chart of CGD. (b) Timing chart of NAGD. (c) ELOSS and IOVERSHOOT trade-off curves for 
CGD and NAGD at turn-on, where RG is varied. 

 

Fig. 4. Circuit schematics of double-pulse test using IGBT module. (a) CGD. (b) NAGD 

 

Fig. 5. Measurement setup of IGBT module. 
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MOSFET, for simplicity, Figs. 3 (a) and (b) only show the 
timing charts of CGD and NAGD at turn-on of IGBT. When 
the IGBT or SiC MOSFET turns on and the collector current 
(IC) or drain current (ID) changes, transient voltage between 
the KE and the PE (VeE) or voltage between KS and PS (VsS) 
is induced as shown in Eq. (1) and (2).  

 
C

eE eE

dI
V L

dt
= −  (1) 

 
D

sS sS

dI
V L

dt
= −  (2) 

where LeE and LsS is the parasitic inductance between the KE 
and the PE in IGBT, KS and PS in SiC MOSFET, and t is 
time. In CGD in Fig. 1 (a), Fig. 2 (a) and Fig. 3 (a), VeE and 
VsS are outside the gate loop, making the gate-to-emitter 
voltage (VGE) and gate-to-source voltage (VGS) unaffected by 
VeE and VsS changes, while in NAGD in Fig. 1 (b), Fig. 2 (b) 
and Fig. 3 (b), VeE and VsS is inside the gate loop, making the 
VGE and VGS affected by VeE and VsS changes [9-11]. In 
NAGD in Fig. 3 (b), AGD is naturally achieved by negative 
feedback effect of LeE, because VGE transiently drops during 
the period of increasing IC due to the transient increase in 
|VeE|, resulting in a decrease in dIC / dt, an increase in the 
switching loss (ELOSS), and a decrease in the collector current 
overshoot (IOVERSHOOT, same for drain current overshoot) [9-

 

Fig. 6. Circuit schematics of double-pulse test using SiC module. (a) CGD. (b) NAGD. 

 

Fig. 7. Measurement setup of SiC module. 
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12], compared to CGD. The VGE waveform of NAGD is very 
similar to that of the previously proposed stop-and-go AGD 
[5, 13], which reduces driving current in the rising phase of 
IC. Fig. 3 (c) shows a schematic of the ELOSS and IOVERSHOOT 
trade-off curves for CGD and NAGD at turn-on, where the 
gate resistance (RG) in Figs. 1 and 2 is varied. In this paper, 
it is clarified for the first time in the world that the trade-off 
curve of NAGD is on the lower left side compared to the 
trade-off curve of CGD. For example, Point B (NAGD, RG = 
R1) has reduced IOVERSHOOT at the same ELOSS compared to 
Point C (CGD, RG = R2, R1 < R2). On the other hand, Point B 
(NAGD, RG = R1) reduces ELOSS compared to Point A (CGD, 
RG = R3, R1 < R3) under IOVERSHOOT-aligned conditions. The 
following explains how to choose CGD and NAGD 
depending on the situation. ELOSS,MIN is defined as the 
minimum value of ELOSS that can be realized by NAGD. 
When the required ELOSS is smaller than ELOSS,MIN, CGD 
should be used, tolerating large IOVERSHOOT. In contrast, when 
the required ELOSS is larger than ELOSS,MIN, NAGD with 
smaller IOVERSHOOT than CGD should be used. 

 

Fig. 9. Measured ELOSS vs. IOVERSHOOT of CGD and NAGD using IGBT module. 

 

Fig. 10. Measured waveforms of Points A3 to D3 in Fig. 9 (c). 
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Fig. 11. Measured ELOSS vs. IOVERSHOOT of CGD and NAGD using SiC 
module. 
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III. MEASURED RESULTS 

Figs. 4 (a) and (b) show the circuit schematics of the 
double pulse test at 600 V for CGD and NAGD using IGBT 
module, respectively, where RG = 0 Ω. Fig. 5 shows the 
measurement setup with an IGBT module (FS100R12N2T4P, 
1200 V, 100 A rating). To minimize any unwanted effect, two 
highly similar gate driver PCBs, for CGD and NAGD, are 
fabricated, and Fig. 5 only shows the latter. The double pulse 
test schematic for CGD and NAGD using SiC module 
(BSM180D12P2C101, 1200 V, 204 A rating) is shown in 
Figs. 6 (a) and (b). Fig. 7 only shows the NAGD measurement 
setup of SiC module for simplicity. Fig. 8 shows a timing chart 
at turn-on. To efficiently perform the trade-off curve 
measurements in Fig. 3 (c) without the need to change RG, the 
gate current (IG) of a current-source type 6-bit digital gate 
driver IC [5] is varied by digital control, where nPMOS is a 
parameter that determines IG as shown in Fig. 8.  

A. IGBT module 

Figs. 9 (a) to (c) show the measured ELOSS vs. IOVERSHOOT 
of CGD and NAGD using IGBT module at the IL of 20 A, 50 
A, and 80 A, respectively. The black and red curves show the 
trade-off curves for CGD and NAGD, respectively, with 
varied nPMOS from 4 to 63. Fig. 9 clearly shows that the trade-
off curve of NAGD is on the lower left side compared to the 
trade-off curve of CGD. Points A1 to A3, Points B1 to B3, 
Point C1 to C3 and Points D1 to D3 are defined for IL = 20 A, 
50 A, and 80 A, respectively, where Points "B"s are the 
proposed NAGD, Point "A"s are CGD with closest IOVERSHOOT 
comparing to Points "B"s, and Point "C"s are CGD with the 
closest ELOSS comparing to Points "B"s. Comparing Point 
"A"s and Point "B"s, the proposed NAGD reduces ELOSS by 
34 %, 46 %, and 49 % under IOVERSHOOT-aligned condition at 
IL = 20 A, 50 A, and 80 A, respectively. Comparing Point "C"s 
and Point "B"s, the proposed NAGD reduces IOVERSHOOT by 24 
%, 30 %, and 33 % under ELOSS-aligned condition at IL = 20 
A, 50 A, and 80 A, respectively. Figs. 10 (a) to (d) show the 
measured waveforms of Points A3 to D3 in Fig. 9 (c), 
respectively. In the proposed Point B3 in Fig. 10 (b), the 
transient VGE drop during the period of increasing IC is clearly 
observed, which is the evidence of NAGD. Comparing ELOSS-
aligned Points B3 and C3, NAGD reduced IOVERSHOOT by 33 
% from 59 A to 40 A and the maximum dIC / dt by 29.5 % 

from 1.49 kA / μs to 1.05 kA / μs. In Fig. 9, with maximum 
IG, CGD achieves fast switching but with larger IOVERSHOOT, 
which can cause damage to power device, as shown in Point 
"D"s. On the other hand, because the negative feedback from 
emitter inductance becomes greater as dIC / dt increase, 
although Point "B"s and "D"s have the same driving strength, 
the dIC / dt of NAGD is lower than CGD, resulting in high 
ELOSS and slow switching, as shown in Fig. 9. Therefore, CGD 
can be chosen when the allowable ELOSS is smaller than 
ELOSS,MIN, and NAGD is preferred when low IOVERSHOOT is 
necessary, as shown and discussed in Fig. 3 (c). 

B. SiC module 

Fig. 11 shows the measured trade-off curve in double-
pulse test at 600 V and 70 A using SiC module. Similar to the 
IGBT measurements, the IG is varied by digitally sweeping 
nPMOS from 4 to 63. Points A4 to D4 are defined. The NAGD 
with maximum IG (Point B4) is located in the lower left side 
of the CGD trade-off curve, which achieves a 26 % reduction 
in ELOSS, comparing to Point A4, under IOVERSHOOT-aligned 
condition and a 25 % reduction in IOVERSHOOT, comparing to 
Point C4, under ELOSS-aligned condition. Figs. 12 (a) to (d) 
show the measured waveforms of Points A4 to D4 in Fig. 11, 
respectively. In Fig. 12 (b), similar to VGE in IGBT, the VGS is 
reduced due to the induced VsS when ID is ramping up. 
Compared to Point A4 and Point C4, ID of Point B4 has a faster 
rising edge when ID is zero, therefore the turn-on delay is 
smaller. The dID / dt is then automatically reduced when ID is 
close to IL of 70 A by NAGD. In contrast, driven by KS, the 
slope of ID become steeper when the gate is further charged in 
Point A4 and C4, leading to a larger IOVERSHOOT. As a result, 
the maximum dID / dt is reduced by 25.6 % from 1.33 kA / μs 
to 0.99 kA / μs, comparing Point C4 to Point B4. In Fig. 12 
(d), driven by maximum IG, ringing occurs on the waveforms 
of ID and VDs, which is harmful to power modules. Instead, in 
Fig. 12 (b), the ringing is suppressed better than Point A4 with 
less ELOSS and turn-on delay. Therefore, it is possible to 
address ringing issue by simply changing the gate drive loop 
from CGD to NAGD.  

IV. CONCLUSIONS 

NAGD is proposed to realize AGD using an ordinary gate 

driver instead of a complex and special active gate driver. In 

 

Fig. 12. Measured waveforms of Points A4 to D4 in Fig. 11. 
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the double pulse tests using IGBT module at 600 V, 80 A, 

compared with CGD, the proposed NAGD reduces ELOSS by 

49 % under IOVERSHOOT-aligned condition. Besides, 33 % 

reduction in IOVERSHOOT, and 29.5 % reduction in maximum 

dIC / dt is achieved under ELOSS-aligned condition. NAGD 

also works in the double pulse tests of SiC module at 600 V, 

70 A. The ELOSS and IOVERSHOOT is reduced by 26 % and 25 % 

under IOVERSHOOT-aligned and ELOSS-aligned condition. The 

maximum dID / dt is reduced by 25.6 %. 
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