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Abstract— A method for determining the optimum time in 

time-domain stop-and-go active gate driving (TD AGD), which 

changes the gate driving strength three times from “strong to 

high-Z to strong”, is proposed. In the double pulse tests of IGBT 

at 600 V, compared with the conventional gate driving, the 

proposed TD AGD reduces the switching loss by 25% and 18% 

at load currents of 50 A and 100 A, respectively, under collector 

current overshoot-aligned conditions. 
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I. INTRODUCTION 

Active gate driving (AGD), which changes the gate 
driving strength multiple times in fine time slots during the 
switching period of power devices, is attracting attention as a 
technology that can solve the trade-off problem between loss 
and noise during power device switching. A time-domain 
stop-and-go active gate driving (TD AGD) [1-16] is an AGD 
that changes the gate driving strength three times from “strong 
to high-Z to strong” or “strong to weak to strong”, and in this 
paper, the time for the first and next drives are defined as t1 
and t2, respectively. TD AGD can cope with variations in 
operating conditions such as load current (IL) and junction 
temperature by adaptively changing t1 and t2 [1-16]. As shown 
in Fig. 1, where VGE is the gate-to-emitter voltage and IC is the 
collector current of IGBTs, various t1 and t2 decision methods 
have been proposed, however, it is not clear which decision 
method is the best to always solve the trade-off problem even 

if the operating conditions vary. Therefore, in this paper, a 
new method shown in Fig. 1 for determining t1 and t2 in TD 
AGD is proposed and the validity of the proposed method is 
proved by measured results with both t1 and t2 varied in two 
dimensions. 

II. PROPOSED METHOD FOR DETERMING OPTIMUN TIME IN 

TIME-DOMAIN STOP-AND-GO ACTIVE GATE DRIVING 

Figs. 2 and 3 show a circuit schematic and a timing chart 
of TD AGD in this paper, respectively. Using a gate driver IC 
(IXDD604SI) with an Enable input, t1 and t2 are controlled by 
controlling the timing of Enable. In this paper, only AGD at 
turn-on is discussed, because the trade-off relationship 
between switching losses and collector-to-emitter voltage 
(VCE) overshoot at turn-off was not observed for the IGBT 
measured in this study. Fig. 4 shows the proposed method for 
determining the optimum t1 and t2 (t1,OPT and t2,OPT). t1,OPT and 
t2,OPT are determined from the measured VGE and IC waveforms 

 
Fig. 1.  Various t1 and t2 decision methods in TD AGD. 
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Fig. 2.  Circuit schematic of TD AGD. 
 

 
Fig. 3.  Timing chart of TD AGD. 
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at each operating condition such as IL and junction 
temperature using conventional gate driving with the gate 
resistance (RG) recommended in the datasheet of IGBTs. t1,OPT 
is the time from the rise edge of VGE to IC = IL. t2,OPT is the time 
from IC = IL to the peak of IC. From the device physics point 
of view, t1,OPT is the time for the gate voltage to charge from − 
15 V to the Miller plateau voltage, and t2,OPT is the time for the 
reverse recovery current of the high-side diode to reach its 
peak value from 0 A. When operating conditions change, t1,OPT 
and t2,OPT also change, making it necessary to measure 
waveforms for each operating condition to determine t1,OPT 
and t2,OPT. 

III. MEASURED RESULTS 

Fig. 5 shows a PCB of the gate driver for TD AGD. The 
gate driver PCB includes a signal isolator and an isolated DC-
DC converter. Figs. 6 and 7 show a circuit schematic and a 
measurement setup of the double pulse test using the gate 
driver and IGBT (CM100DY-24T, 1200 V, 100 A rating) at 
600 V, respectively. Figs. 8 (a) and (b) show timing charts of 
the conventional single-step gate driving (SGD) and AGD at 
turn-on for comparison, respectively. In SGD, RG is varied 

from 2.2  to 33 . In AGD, RG is fixed at 3.9  as 
recommended in the datasheet. 

Figs. 9 (a) and (b) show the measured switching loss 
(ELOSS) vs. collector current overshoot (IOVERSHOOT) of the 
conventional SGD and AGD at IL = 50 A and 100 A, 
respectively. The black curves show the trade-off curves for 
SGD with varying RG. Figs. 10 and 11 show the measured t1 
and t2 dependence of ELOSS, IOVERSHOOT, and the relative loss 

increase (RLI) of AGD at IL = 50 A and 100 A, respectively. 
The definition of RLI is as follows: 

LOSS,AGD LOSS,SGD

LOSS,SGD

RLI 100
E E

E
=

−
             () 

where ELOSS,AGD is ELOSS of AGD and ELOSS,SGD is ELOSS of 
SGD, which has the same IOVERSHOOT as AGD. ELOSS,SGD is 
calculated using a curve that is a curve approximation of the 
trade-off curve in Fig. 9, instead of the measured points of 
SGD in Fig. 9. Two types of t1 and t2 dependence of ELOSS, 
IOVERSHOOT, and RLI, global and local, are measured. In global 
t1 and t2 sweep measurements to compare the conventional and 
proposed methods, t1 is varied in 50 ways from 100 ns to 590 
ns in 10 ns steps, and t2 is varied in 49 ways from 20 ns to 500 
ns in 10 ns steps, for a total of 2450 combinations. In local t1 
and t2 sweep measurements to validate the proposed method, 
t1 is varied in 50 ways from 200 ns to 298 ns in 2 ns steps, and 
t2 is varied in 48 ways from 14 ns to 108 ns in 2 ns steps, for a 
total of 2400 combinations. In this paper, the lower limit of t2 

 
Fig. 5.  PCB of gate driver for TD AGD. 
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Fig. 6.  Circuit schematic of double pulse. 

 
Fig. 7.  Measurement setup of double pulse test. 
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Fig. 8.  Timing charts at turn-on for comparison. (a) Conventional single-
step gate driving (SGD). (b) Active gate driving (AGD). 
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was 14 ns, because when t2 is set below 12 ns, the gate driver 
IC in Fig. 2 cannot be enabled for a short pulse, and the high-
Z period is lost. Comparing Figs. 10 (a) and (b), and Figs. 11 
(a) and (b), ELOSS and IOVERSHOOT have a trade-off relationship. 
t1,OPT and t2,OPT in Figs. 10 and 11 are determined from the 
measured waveforms in Fig. 12 (a) and Fig. 13 (a) shown later, 
and AGD using them is defined as “Proposed AGD”. The 
measurement point with the lowest RLI in all measurement 
points is defined as “Best AGD”. If t1 and t2 of Proposed AGD 
agree with t1 and t2 of Best AGD, it is experimental evidence 
that the proposed method for determining t1,OPT and t2,OPT is 
correct. The optimization of t1 is very important to reduce RLI 
and increase the benefit of AGD over SGD, because as shown 
in Figs. 10 (c) and 11 (c), the t1 dependence of RLI is sensitive, 
while the t2 dependence is insensitive. As shown in Figs. 10 
(c) and 11 (c), RLI is almost minimum at t1 = t1,OPT and t2 = 
t2,OPT, which supports the validity of the proposed method for 
determining t1,OPT and t2,OPT. 

To compare the conventional and proposed methods, the 
measured results of the conventional method [1-9] shown in 
Fig. 1 are also shown in Figs. 9 to 11. Table I shows a 
summary of RLI of the conventional methods, Proposed AGD, 
and Best AGD extracted from Fig. 10 (c) and Fig. 11 (c). 
RLI’s of the conventional method [1-9] are large, while RLI 
of Proposed AGD is small and is fairly close to RLI of Best 
AGD. Specifically, at IL = 50 A, Proposed AGD using t1 = 
t1,OPT = 218 ns, t2 = t2,OPT = 40 ns achieves RLI of − 25%. At 
IL = 100 A, Proposed AGD using t1 = t1,OPT = 236 ns, t2 = t2,OPT 
= 42 ns achieves RLI of − 18%. Since t1 and t2 in Proposed 
AGD are quite close to t1 and t2 in Best AGD, the proposed 
method for determining t1,OPT and t2,OPT is experimentally 
proven to be correct. 

Fig. 12 shows measured waveforms of Point A1, Proposed 
AGD, Point B1, and Best AGD in Fig. 9 (a) at IL = 50 A. Point 
A1 shown in Fig. 12 (a) is the measurement point for 
determining t1,OPT and t2,OPT as shown in Fig. 4, where t1,OPT = 
218 ns, t2,OPT = 40 ns. Point B1 shown in Fig. 12 (c) is the SGD 
measurement point where IOVERSHOOT is almost the same as 

Proposed AGD. Comparing Proposed AGD with RG = 3.9  

in Fig. 12 (b) and Point B1 with RG = 18 , Proposed AGD 
reduces ELOSS from 5.9 mJ to 4.3 mJ under IOVERSHOOT -aligned 
conditions by setting high-Z just before the timing of 
IOVERSHOOT and driving more strongly than Point B1 for all 
periods except t2. 

Fig. 13 shows measured waveforms of Point A2, Proposed 
AGD, Point B2, and Best AGD in Fig. 9 (b) at IL = 100 A. 
Point A2 shown in Fig. 13 (a) is the measurement point for 
determining t1,OPT and t2,OPT as shown in Fig. 4, where t1,OPT = 
236 ns, t2,OPT = 42 ns. Point B2 shown in Fig. 13 (c) is the SGD 
measurement point where IOVERSHOOT is almost the same as 

Proposed AGD. Comparing Proposed AGD with RG = 3.9  

in Fig. 13 (b) and Point B2 with RG = 12 , Proposed AGD 
reduces ELOSS from 10.7 mJ to 8.6 mJ under IOVERSHOOT -
aligned conditions. 

IV. CONCLUSIONS 

A new method for determining t1,OPT and t2,OPT to minimize 
RLI in TD AGD is proposed and the validity of the proposed 
method is proved by measured results with both t1 and t2 
varied in two dimensions. t1,OPT is the time from the rise edge 
of VGE to IC = IL. t2,OPT is the time from IC = IL to the peak of 
IC. At IL = 50 A, Proposed AGD using t1 = t1,OPT = 218 ns, t2 = 
t2,OPT = 40 ns achieves RLI of − 25%. At IL = 100 A, Proposed 
AGD using t1 = t1,OPT = 236 ns, t2 = t2,OPT = 42 ns achieves RLI 
of − 18%. 

TABLE I.  SUMMARY OF RLI OF CONVENTIONAL METHODS, 
PROPOSED AGD, AND BEST AGD 
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Fig. 9.  Measured switching loss (ELOSS) vs. collector current overshoot 

(IOVERSHOOT) of conventional SGD and AGD. (a) IL = 50 A. (b) IL = 100 A. 
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Fig. 11.  Measured t1 and t2 dependence of (a) ELOSS, (b) IOVERSHOOT, (c) relative loss increase (RLI) of AGD at IL = 100 A. 
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Fig. 12.  Measured waveforms of Point A1, Proposed AGD, Point B1, and 
Best AGD in Fig. 9 (a) at IL = 50 A. 
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Fig. 13.  Measured waveforms of Point A2, Proposed AGD, Point B2, and 

Best AGD in Fig. 9 (b) at IL = 100 A. 
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