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Abstract— In order to reduce the switching loss (ELOSS) of 
power devices at different load current (IL) conditions, a 
closed-loop active gate driver (AGD) IC for IGBTs with novel 
integrated sensing functions is proposed to automatically 
optimize the gate driving pattern as IL changes. The proposed 
AGD IC can change IG when the collector current equals IL by 
sensing and integrating the induced voltage between the Kelvin 
emitter and power emitter terminals during switching 
transient. In the switching measurements of IGBTs at 600 V 
using AGD IC fabricated with 180 nm BCD process, compared 
with the conventional single-step gate driving, the proposed 
AGD reduces ELOSS by 20%, 24%, and 27% at IL of 50 A, 75 A, 
and 100 A, respectively. 
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I. INTRODUCTION 
Active gate driver (AGD), which changes the gate 

driving strength multiple times in fine time slots during the 
switching period of power devices, is attracting attention as a 
technology that can solve the trade-off problem between loss 
and noise during power device switching. AGD with closed-
loop instead of open-loop is essential to cope with operating 
condition variations such as load current and temperature. A 
time-domain stop-and-go active gate driver (TD AGD) is 
attracting attention as a method of AGD suitable for single-
chip integration of closed-loop AGD. Fig. 1 (a) shows the 

working principle of TD AGD, where the gate driving 
strength is changed three times from “strong to high-Z to 
strong” or “strong to weak to strong”, and in this paper, the 
time for the first and second drive slot are defined as t1 and 
t2, respectively. Table I shows published closed-loop TD 
AGD ICs [1-3] and Fig. 1 (b) shows the methods of 
determining t1 and t2 [1-3]. In [4], it is shown that in order to 
minimize the switching loss (ELOSS) in IGBT turn-on phase 
under collector current overshoot (IOVERSHOOT)-alignment 
condition, the end timing of t1 is the moment when the 
collector current (IC) equals the load current (IL) and the end 
timing of t2 is the moment of the peak of IC as shown in Fig. 
1 (b). The validity of this method is supported by open-loop 
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Fig. 2. Circuit schematic of proposed TD AGD IC with IC = IL sensing. 
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Fig. 3. Circuit schematic of proposed VeSS sensor. 
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Fig. 1. Time-domain stop-and-go active gate driver (TD AGD). (a) 
Definition. (b) Methods of determining t1 and t2. 
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measurements [4]. Therefore, in this paper, a closed-loop TD 
AGD IC that integrates the methods in [4] is developed. The 
challenge in IC design is how to sense IC = IL to determine t1. 
Adding Rogowski coils and shunt resistors for IC 
measurement is not desirable because of the space cost and 
energy loss. Therefore, an integrated solution for sensing IC = 
IL is proposed in this paper. 

II.  ACTIVE GATE DRIVER IC WITH IC = IL SENSING 
Figs. 2 to 5 show circuit schematics and a timing chart of 

the proposed closed-loop TD AGD IC with IC = IL sensing. 
The proposed IC includes the VeSS sensor to determine t1 and 
t2, controller for the state change, and a 6-bit digital gate 
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Fig. 5. Timing chart of proposed TD AGD IC with IC = IL sensing. 
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Fig. 6. Die photo of AGD IC. 
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Fig. 7. Circuit schematic of double pulse test. 
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Fig. 9. Timing charts of SGD and AGD for comparison. 
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Fig. 10. Measured waveforms at IL = 100 A. (a) Turn-off. (b) Turn-on. 
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driver with the gate current (IG) in 64 levels, IG = nPMOS × 
143 mA and nPMOS is an integer from 0 to 63. At turn-on, an 
active gate driving is performed in three slots with different 
IG of strong (n1) -weak (n2) -strong (n3). n1 to n3 are preset by 
a digital input (Scan In), while t1 and t2 are automatically 
determined by the VeSS sensor. This paper will focus on the 
development of VeSS sensor, because the other circuits in Fig. 
2 are almost the same as [1]. The power emitter terminal is 
connected to the VeSS sensor, and the input voltage (VeSS) is 

VeE + 15 V, where VeE is the voltage between the Kelvin 
emitter and power emitter terminals (Fig. 2). Since the input 
voltage of IC must be below 5 V, the attenuator consisting of 
R1 and R2 attenuates VeSS to VeSS’ by a factor of 1/6 (Fig. 3). 
Since VeE is proportional to dIC / dt, integrating VeSS’ using an 
op-amp integrator results in an integral output (VINT) 
waveform proportional to IC (Figs. 2 to 5). Thus, the IL 
information can be sensed as the VINT amplitude at turn-off 
(Fig. 5). In turn-on, the moment when VINT returns to its 
initial value (VREFA), i.e., the moment when the integral area 
of VeSS’ in turn-off becomes equal to the integral area of VeSS’ 
in turn-on, is the moment of IC = IL (Fig. 5). Thus, the end 
timing of t1 (tA) is detected by comparing VINT and VREFA 
with a comparator (Figs. 3 and 5). The detection method for 
the end timing of t2 (tB) is the same as in [1]. The IC 
compares VeSS’ with the reference voltage (VREFB) to find the 
peak of IC waveform. To avoid accumulation of integration 
errors due to op-amp offsets, the op-amp integrator is 
operated in three modes: “Reset”, “Integrate”, and “Hold” 
(Figs. 3 to 5). Fig. 6 shows a die photo of AGD IC fabricated 
with 180-nm BCD process. 

III. MEASUREMENT RESULTS 
Figs. 7 and 8 show a circuit schematic and a 

measurement setup of the double pulse test at 600 V using 
the developed AGD IC and an IGBT module (CM100DY-
24T, 1200 V, 100 A rating), respectively. Figs. 9 (a) and (b) 
show timing charts of the conventional single-step gate 
driving (SGD) and the proposed AGD for comparison, 
respectively. In SGD, n is varied, which emulates a 
conventional gate driver with varied gate resistance. In AGD, 
(n1, n2, n3) are preset to (8, 0, 8), and t1 and t2 are 
automatically determined by the VeSS sensor. Fig. 10 shows 
the measured waveforms corresponding to Fig. 5 at IL = 100 
A. The proposed VeSS sensor successfully detects tA, where IC 
= IL, and tB, where IC peaks, exactly as the design intent in 
[4] in Fig. 1 (b) and Fig. 5. Figs. 11 (a) and (b) show the 
measured IC and VGE waveforms with varied IL of 50 A, 75 A, 
and 100 A, respectively. Figs. 12 (a) and (b) show the 
measured IL dependence of t1 and t2, respectively. The 
automatic adjustment of t1 and t2 in response to IL changes is 
clearly indicated. Figs. 13 (a) to (c) show the measured ELOSS 
vs. IOVERSHOOT of the conventional SGD and the proposed 
AGD at IL = 50 A, 75 A, and 100 A, respectively. In SGD, n 
is varied from 3 to 14. By automatically tuning t1 and t2 as 
shown in Fig. 11, compared with the conventional SGD, the 
proposed AGD reduces ELOSS by 20 %, 24 %, and 27 % 
under IOVERSHOOT-aligned condition and reduces IOVERSHOOT 
by 30 %, 26 %, and 28 % under ELOSS-aligned condition at IL 
= 50 A, 75 A, and 100 A, respectively. In Fig. 13 (c), Points 
A to C are defined, where Point B is the proposed AGD, 
Point A is SGD with closest IOVERSHOOT comparing to Point 
B, and Point C is SGD with the closest ELOSS comparing to 
Point B. Figs. 14 (a) to (c) show the measured waveforms of 
Points A to C in Fig. 13 (c) at IL = 100 A, respectively. In 
Point B, the proposed VeSS sensor successfully detects tA, 
where IC = IL, and tB, where IC peaks. By using TD AGD 
with (n1, n2, n3) = (8, 0, 8), the proposed Point B reduces 
ELOSS from 15 mJ to 11 mJ compared to Point A under 
IOVERSHOOT-aligned condition, and reduces IOVERSHOOT from 
59 A to 43 A compared to Point C under ELOSS-aligned 
condition. As shown in Table I, this work is the first to 
realize a closed-loop AGD IC that changes IG at IC = IL 
timing with the proposed integrated VeSS sensor circuit. 
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Fig. 11. Measured (a) IC and (b) VGE waveforms with varied IL of 50 A, 75 
A, and 100 A. 
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IV. CONCLUSIONS 
The closed-loop time-domain stop-and-go AGD IC with 

IC = IL sensing is proposed to constantly reduce ELOSS under 
IL variations. Compared with the conventional SGD, the 
proposed AGD reduces ELOSS by 20 %, 24 %, and 27 % 
under IOVERSHOOT-aligned condition and reduces IOVERSHOOT 
by 30 %, 26 %, and 28 % under ELOSS-aligned condition at IL 
= 50 A, 75 A, and 100 A, respectively. 
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Fig. 13. Measured ELOSS vs. IOVERSHOOT of conventional SGD and proposed AGD. (a) IL =50 A. (b) IL =75 A. (c) IL =100 A. 
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